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For many years AASHTO provided no recommendation to state DOT’s on bottom flange 

confinement reinforcement for their bridge superstructures.  The 1996 edition of 

AASHTO Standard Specification for Highway Bridges stated that nominal reinforcement 

be placed to enclose the prestressing steel from the end of the girder for at least a distance 

equal to the girder’s height.  A few years later the 2004 AASHTO LRFD Bridge Design 

Specification changed the distance over which the confinement was to be distributed 

from 1.0h to 1.5h, and gave minimum requirements for the amount of steel to be used, 

No.3 bars, and their maximum spacing, not to exceed 6”.  

 

Research was undertaken to study what impact, if any, confinement reinforcement has on 

the performance of prestressed concrete bridge girders.  Of particular interest was the 

effect confinement had on the transfer length, development length, and vertical shear 

capacity of the fore mentioned members.  First, an analytical investigation was performed 

on the subject, and then an experimental investigation followed which consisted of 

designing, fabricating, and testing eight tee-girders and three NU1100 girders with 

particular attention paid to the amount and distribution of confinement reinforcement 

placed at the end of each girder.      
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The results of the study show: 1) neither the amount or distribution of confinement 

reinforcement had a significant effect on the initial or final transfer length of the prestress 

strands; 2) at the AASHTO calculated development length, no significant impact from 

confinement was found on either the nominal flexural capacity of bridge girders or bond 

capacity of the prestressing steel; 3) the effects from varied confinement reinforcement 

on the shear resistance of girders tested was negligible, however, distribution of 

confinement did show to have an impact on the prestressed strands’ bond capacity; 4) 

confinement distribution across the entire girder did increase ductility and reduced 

cracking under extreme loading conditions.  



www.manaraa.com

ACKNOWLEDEMENTS 

 

I would like to express my appreciation to my advisor Dr. Maher Tadros for his 

continued support throughout my education going into my young professional career.  I 

will be forever grateful for the opportunities provided to me while working under his 

supervision.  I also would like to thank my co-advisor Dr. George Morcous for his 

guidance and support through all of my research and coursework during my graduate 

studies.   I need to thank Dr. Christopher Tuan for being a part of my advisory committee, 

and Dr. Kromel Hanna for his educational and personal encouragement.   

 

To my fellow current and past graduate assistant colleagues, your assistance in the 

structural lab and comradeship was greatly appreciated.  I need to thank Kelvin Lein, 

manager of the PKI structural laboratory, Jeff Svatora, undergraduate laboratory 

assistant, and Mike Rezac, manager of the mechanical laboratory, for all of their help 

with specimen fabrication and test setup.  I also want to acknowledge the office staff at 

the Peter Kiewit Institute, whose guidance made the process towards receiving my degree 

effortless and enjoyable. 

 

Lastly, I need to acknowledge my family and friends, especially my wife Stacey and 

parents, for all of their infinite support throughout my entire secondary education.  The 

process was long and at times overwhelming. Their never ending encouragement, along 

with an excess of caffeine, are what drove me through many all-night sessions.  I will 

never forget the sacrifices you made while I was completing my education.   



www.manaraa.com

i 
 

TABLE OF CONTENTS 

TABLE OF FIGURES ........................................................................................................ v 

TABLE OF TABLES ........................................................................................................ ix 

NOTATIONS ...................................................................................................................... x 

ACRONYMS .................................................................................................................... xii 

1 INTRODUCTION ....................................................................................................... 1 

1.1 Overview .............................................................................................................. 1 

1.2 Objectives ............................................................................................................. 4 

1.3 Tasks ..................................................................................................................... 5 

1.3.1 Analytical Investigation of NU I-Girders ..................................................... 5 

1.3.2 Full Scale Testing of 24 inch Tee-girders (T24) ........................................... 5 

1.3.3 Full Scale Testing of NU1100 Bridge Girders ............................................. 6 

1.4 Organization ......................................................................................................... 7 

2 LITERATURE REVIEW ............................................................................................ 7 

2.1 Transfer Length Overview ................................................................................... 7 

2.1.1 Definition of Transfer Length ....................................................................... 8 

2.1.2 Methods of Calculating Transfer Length ...................................................... 8 

2.1.2.1 2004 AASHTO LRFD .............................................................................. 8 

2.1.3 Previous Transfer Length Research .............................................................. 9 

2.1.3.1 Russell and Burns (1996) .......................................................................... 9 

2.1.3.2 Maguire (2009) ........................................................................................ 13 

2.2 Development Length Overview ......................................................................... 16 



www.manaraa.com

ii 
 

2.2.1 Definition of Development Length ............................................................. 17 

2.2.2 Methods of Calculating Development Length ............................................ 17 

2.2.2.1 2004 AASHTO LRFD ............................................................................ 17 

2.2.3 Previous Development Length Research .................................................... 18 

2.2.3.1 FHWA (1994) ......................................................................................... 19 

2.2.3.2 Shahawy (2001)....................................................................................... 20 

2.3 Vertical Shear Overview .................................................................................... 23 

2.3.1 Definition of Vertical Shear ........................................................................ 24 

2.3.2 Methods of Calculating Vertical Shear Capacity ........................................ 24 

2.3.2.1 2004 AASHTO LRFD ............................................................................ 24 

2.3.3 Previous Vertical Shear Research ............................................................... 25 

2.3.3.1 Csagoly (1991) ........................................................................................ 25 

2.3.3.2 Shahawy, Robinson, and deV. Batchelor (1993) .................................... 29 

2.3.3.3 Ross (2010) ............................................................................................. 34 

3 ANALYTICAL & EXPERIMENTAL INVESTIGATION ...................................... 39 

3.1 Analytical Investigation ...................................................................................... 39 

3.1.1 Concrete Strength........................................................................................ 39 

3.1.2 Transfer & Development Length ................................................................ 44 

3.2 Experimental Investigation ................................................................................. 46 

3.2.1 Girder Design, Fabrication, and Test Setup ................................................ 46 

3.2.1.1 T24 Girder Design ................................................................................... 46 

3.2.1.2 T24 Girder Fabrication ............................................................................ 49 

3.2.1.3 T24 Girder Test Setup ............................................................................. 53 



www.manaraa.com

iii 
 

3.2.1.3.1 Transfer Length ................................................................................. 53 

3.2.1.3.2 Development Length ......................................................................... 55 

3.2.1.3.3 Vertical Shear ................................................................................... 57 

3.2.1.4 NU1100 Girder Design ........................................................................... 59 

3.2.1.5 NU1100 Girder Fabrication .................................................................... 63 

3.2.1.6 NU1100 Girder Test Setup ...................................................................... 67 

3.2.1.6.1 Development Length ......................................................................... 67 

3.2.1.6.2 Vertical Shear ................................................................................... 70 

3.2.2 Test Results ................................................................................................. 72 

3.2.2.1 T24 Girders ............................................................................................. 72 

3.2.2.1.1 Transfer Length ................................................................................. 73 

3.2.2.1.2 Development Length ......................................................................... 76 

3.2.2.1.3 Vertical Shear ................................................................................... 85 

3.2.2.2 NU1100 Girders ...................................................................................... 92 

3.2.2.2.1 Development Length ......................................................................... 92 

3.2.2.2.2 Vertical Shear ................................................................................. 101 

4 SUMMARY, CONCLUSIONS, & RECOMMENDATIONS ................................ 107 

4.1 Summary ........................................................................................................... 107 

4.2 Conclusions ...................................................................................................... 109 

4.2.1 Transfer Length ......................................................................................... 109 

4.2.2 Development Length ................................................................................. 110 

4.2.3 Vertical Shear............................................................................................ 111 

4.3 Recommendations ............................................................................................ 112 



www.manaraa.com

iv 
 

4.3.1 Future Research ........................................................................................ 112 

4.3.2 DOT Girder Detailing ............................................................................... 113 

REFERENCES ............................................................................................................... 115 

APPENDIX A – T24 Girder Design Calculations .......................................................... 117 

APPENDIX B – NU1100 Girder Design Calculations .................................................. 123 

 

 



www.manaraa.com

v 
 

TABLE OF FIGURES 

Figure 1.1Concrete Stress-Strain Relationship (Braga, Gigliotti and Laterza 2006) ......... 1 

Figure 2.1 AASHTO Idealized Steel Stress vs. Distance from Member End .................... 9 

Figure 2.2 Transfer Prism Reinforcement (Maguire 2009) .............................................. 14 

Figure 2.3 Initial and Final Transfer Lengths from Transfer Prisms (Maguire 2009) ...... 15 

Figure 2.4 Transfer Length vs. Confinement Reinforcement (Maguire 2009) ................. 16 

Figure 2.5 AASHTO Idealized Steel Stress vs. Distance from Member End .................. 18 

Figure 2.6 Section Details of Type C Test Girders (M. Shahawy 2001) .......................... 20 

Figure 2.7 Effects of Shear Span to Depth Ratio on Strand Slip (M. Shahawy 2001) ..... 22 

Figure 2.8 Splitting Force in Bearing Area (Csagoly 1991) ............................................. 28 

Figure 2.9 AASHTO Beam Cross Section (Shahawy et al. 1993) ................................... 31 

Figure 2.10 Shear Comparison (Shahawy et al. 1993) ..................................................... 33 

Figure 2.11 Specimen Details (Ross 2010)....................................................................... 35 

Figure 2.12 Specimen Fabrication and Test Setup (Ross 2010) ....................................... 36 

Figure 2.13 Specimen Reinforcement and Confinement (Ross 2010) ............................. 36 

Figure 2.14 Shear vs. Displacement (Ross 2010) ............................................................. 37 

Figure 2.15 Shear vs. Strand Slip (Ross 2010) ................................................................. 38 

Figure 3.1 Proposed Stress-Strain Relationship (Saatcioglu and Razvi 1992) ................. 39 

Figure 3.2 Computation of Lateral Pressure from Hoop Tension (Saatcioglu and Razvi 

1992) ................................................................................................................................. 41 

Figure 3.3 Distribution of Lateral Pressures (Saatcioglu and Razvi 1992) ...................... 42 

Figure 3.4 Cross Section of T24 Girder ............................................................................ 48 



www.manaraa.com

vi 
 

Figure 3.5 T24 Confinement Reinforcement Distribution ................................................ 49 

Figure 3.6 T24 End Confinement ..................................................................................... 50 

Figure 3.7 T24 Forming .................................................................................................... 51 

Figure 3.8 T24 Concrete Spread ....................................................................................... 52 

Figure 3.9 T24 Finishing................................................................................................... 53 

Figure 3.10 T24 Transfer Length Test Setup .................................................................... 54 

Figure 3.11 Measuring Strain in Concrete for Transfer Length Estimation ..................... 55 

Figure 3.12 T24 Development Length Test Setup (CAD) ................................................ 56 

Figure 3.13 Development Length Testing Setup .............................................................. 56 

Figure 3.14 Potentiometers Attached to the Bottom Row of Strands ............................... 57 

Figure 3.15 T24 Vertical Shear Test Setup (CAD) ........................................................... 57 

Figure 3.16 T24 Vertical Shear Test Setup ....................................................................... 58 

Figure 3.17 Vertical Shear Test Strand Instrumentation .................................................. 59 

Figure 3.18 Cross Section of NU1100 Girder and Deck .................................................. 61 

Figure 3.19 NU1100 Confinement Reinforcement Detail ................................................ 62 

Figure 3.20 NU1100 Reinforcement ................................................................................. 64 

Figure 3.21 NU1100 Confinement Reinforcement ........................................................... 64 

Figure 3.22 NU1100 Pouring ............................................................................................ 65 

Figure 3.23 NU1100 at Release ........................................................................................ 66 

Figure 3.24 NU1100 Deck Forming ................................................................................. 66 

Figure 3.25 NU1100 Deck Pouring .................................................................................. 67 

Figure 3.26 NU1100 Development Length Test Setup (CAD) ........................................ 68 

Figure 3.27 NU1100 Development Length Test Setup .................................................... 69 



www.manaraa.com

vii 
 

Figure 3.28 Development Length Test Strand Instrumentation ........................................ 70 

Figure 3.29 NU1100 Vertical Shear Test Setup (CAD) ................................................... 71 

Figure 3.30 NU1100 Vertical Shear Test Setup ............................................................... 71 

Figure 3.31 Vertical Shear Test Strand Instrumentation .................................................. 72 

Figure 3.32 T-4-1.0h-B North End, West Side Surface Strain Measurements with 

Modified 95% AMS Method ............................................................................................ 73 

Figure 3.33 T24 Transfer Length Comparison ................................................................. 75 

Figure 3.34 T24 Load v. Deflection Comparison ............................................................. 78 

Figure 3.35 T24 Post Development Testing ..................................................................... 79 

Figure 3.36 T24 Development Test Strand Designation .................................................. 80 

Figure 3.37 T-6-1.5h-A Development Length Test Strand Slippage ................................ 80 

Figure 3.38 T-6-0.5l-A Development Length Test Strand Slippage ................................ 81 

Figure 3.39 T-6-1.5h-B Development Length Test Strand Slippage ................................ 81 

Figure 3.40 T-4-1.0h-B Development Length Test Strand Slippage ................................ 82 

Figure 3.41 T-6-1.5h-C Development Length Test Strand Slippage ................................ 82 

Figure 3.42 T-4-1.0h-C Development Length Test Strand Slippage ................................ 83 

Figure 3.43 T-12-0.5l-D Development Length Test Strand Slippage .............................. 83 

Figure 3.44 T-4/6-1/1.5h-D Development Length Test Strand Slippage ......................... 84 

Figure 3.45 T24 Load v. Deflection Comparison ............................................................. 86 

Figure 3.46 T-12-0.5l-D Development Length Test Slippage .......................................... 87 

Figure 3.47 T-4/6-1/1.5h-D Development Length Test Slippage ..................................... 88 

Figure 3.48 T24 T-4-1.0h-D Post Shear Test ................................................................... 89 

Figure 3.49 T24 Load v. Avg. Strand Slip Comparison ................................................... 90 



www.manaraa.com

viii 
 

Figure 3.50 T24 Load v. Max. Strand Slip Comparison ................................................... 90 

Figure 3.51 NU1100 Load v. Deflection Comparison ...................................................... 94 

Figure 3.52 NU1100 Girder 2 Post Development Testing ............................................... 95 

Figure 3.53 NU1100 Development Test Strand Designation ........................................... 96 

Figure 3.54 NU1100 Girder 1 Strand Slip ........................................................................ 97 

Figure 3.55 NU1100 Girder 2 Strand Slip ........................................................................ 97 

Figure 3.56 NU1100 Girder 3 Strand Slip ........................................................................ 98 

Figure 3.57 NU1100 Girder 3 Post Development Test..................................................... 99 

Figure 3.58 NU1100 Load v. Max. Strand Slip Comparison ......................................... 100 

Figure 3.59 NU1100 Load v. Deflection Comparison .................................................... 102 

Figure 3.60 NU1100 Girder 2 Post Shear Test ............................................................... 103 

Figure 3.61 NU1100 Shear Test Strand Designation...................................................... 103 

Figure 3.62 NU1100 Girder 1 Strand Slip ...................................................................... 104 

Figure 3.63 NU1100 Girder 2 Strand Slip ...................................................................... 105 

Figure 3.64 NU1100 Girder 3 Strand Slip ...................................................................... 105 

Figure 3.65 NU1100 Load v. Max. Strand Slip Comparison ......................................... 106 

Figure 4.1 Collision Impact on Exterior Girder .............................................................. 114 

 



www.manaraa.com

ix 
 

TABLE OF TABLES 

Table 2.1 Effects of Confining Reinforcement on Measured Transfer Lengths ............... 12 

Table 3.1 Confined Concrete Strength.............................................................................. 43 

Table 3.2 Transfer Length and Development Length Equations ...................................... 45 

Table 3.3 T24 Girder Designation and Confinement Reinforcement ............................... 49 

Table 3.4 NU1100 End Confinement ............................................................................... 62 

Table 3.5 T24 Girder Transfer Length Summary ............................................................. 74 

Table 3.6 T24 Girder Transfer Length Comparison ......................................................... 76 

Table 3.7 T24 Girder Flexural Capacity ........................................................................... 77 

Table 3.8 T24 Girder Shear Capacity ............................................................................... 86 

Table 3.9 NU1100 Girder Flexural Capacity .................................................................... 93 

Table 3.10 NU1100 Girder Shear Capacity .................................................................... 101 

 



www.manaraa.com

x 
 

NOTATIONS 

As   Area of confinement steel 

Av   Area of shear reinforcement 

bc   Distance of confinement steel 

bv   Effective web width; minimum width within dv 

db   Diameter of strand or reinforcing bar 

dv   Effective shear depth 

f’c   Final (design) concrete strength  

f’cc   Final confined concrete strength 

f’ci   Initial concrete strength at time of release of prestress force 

f’co   Unconfined initial concrete strength 

fle   Lateral uniform confining pressure 

fpe   Effective stress after losses 

fps   Stress at nominal resistance 

fyt   Yield stress of confinement steel in tension 

h   Height of girder 

Ktr   Transverse reinforcement coefficient 

k   Modification factor  

   (1.6 for bridge girders greater than 24” deep) 

k1   Variation coefficient 

k2   Variation coefficient 

ld   Development length  



www.manaraa.com

xi 
 

lt   Transfer length 

Mn   Nominal moment capacity 

n   Number of longitudinal bars to develop 

s   Spacing of confinement reinforcement 

sl   Spacing of lateral reinforcement 

Vc   Concrete contribution to shear resistance 

Vn   Nominal shear capacity 

Vp   Prestress force contribution to shear resistance 

Vs   Steel contribution to shear resistance 

β   Factor indicating ability of diagonally cracked concrete to transmit tension 

   (AASHTO Article 5.8.3.4) 

φ   Resistance design factor 

θ   Angle of inclination of diagonal compressive stresses 

α   Angle of inclination of transverse reinforcement to longitudinal axis 

 



www.manaraa.com

xii 
 

ACRONYMS 

AASHTO American Association of State Highway and Transportation Officials 

ACI   American Concrete Institute 

AMS  Average Maximum Strain 

BOPP  Bridge Operations, Policy, and Procedure  

CAD  Computer Aided Drawing 

DEMEC  Detachable Mechanical (gauges) 

DOT  Department of Transportation 

FDOT  Florida Department of Transportation 

FHWA  Federal Highway Administration 

LRFD  Load and Resistance Factor Design 

LVDT  Linear Voltage Differential Transducers 

NCHRP  National Cooperative Highway Research Program 

NDOR  Nebraska Department of Roads 

NU   Nebraska University 

PCA  Portland Cement Association 

PKI   Peter Kiewit Institute 

WWR   Welded Wire Reinforcement 

 

 



www.manaraa.com

1 

 

1 INTRODUCTION 

 

1.1 Overview 

The definition of confine is to enclose an area with bounds.  The effects from 

confinement are known and utilized in numerous applications throughout engineering.  A 

confining volume, or vessel, changes the reaction, for all three states of matter, when 

outside stimulates are added.  Confined concrete for example, behaves quite differently 

than a similarly unconfined specimen when an axial stress is induced.  Figure 1.1 shows a 

stress-strain relationship for both unconfined and confined concrete.        

 

 

Figure 1.1Concrete Stress-Strain Relationship (Braga, Gigliotti and Laterza 2006) 

 

This phenomenon has led to increased research on the subject to study the consequences 

of confining a particular material with another.   
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Reinforced and prestressed concrete incorporates confinement for strength and stability, 

and to enhance the overall product.  In particular, prestressed concrete bridge girders 

designed today require confinement reinforcement to be located at their ends, around the 

prestressing steel in the bottom flange.  There are many reasons for adding the 

reinforcement around the strands, one of which is to reduce cracking in the bottom flange 

from the force transferred into the girder by the prestressed steel.  But recent research has 

provided code officials with information on other benefits related to confinement.    

 

For many years AASHTO Standard Specifications provided no guidance to state DOT’s 

on confinement reinforcement for bridge superstructures.  Variety existed from every 

state bridge department and practicing engineer on the amount of reinforcement and the 

length of its distribution.  In 1996 the AASHTO Standard Specification for Highway 

Bridges included a specification, Section 9.22.2, which included and mandated 

confinement reinforcement.  Section 9.22.2 simply stated:    

 

“For at least the distance d from the end of the girder, [where d is the depth of 

the girder] nominal reinforcement shall be placed to enclose the prestressing 

steel in the bottom flange” (AASHTO 1996).  

 

While the 1996 specification did now require confinement reinforcement in newly 

designed bridge girders, it did not specify either a size of reinforcement to be used or 

suggest adequate spacing of the bottom flange reinforcement over the distance d. 
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Therefore, bridge engineers and departments of transportation were still left to interpret 

the new specification, and girder details from state to state remained inconsistent.  For 

example, several bridge girders designed and developed in Nebraska during the mid 

1990’s, such as NU I-girders, were detailed conservatively using welded wire 

reinforcement D4@4” spacing, equivalent to #3 @ 12”, along the full length of the girder 

regardless of the girder depth. 

 

A few years later AASHTO reviewed their specification on confinement reinforcement 

and unveiled a modified version in the 2004 AASHTO LRFD Bridge Design 

Specification.  Section 5.10.10.2 of the 2004 specification states that,  

 

“For the distance of 1.5d from the end of the girders other than box girders, 

[where d is the depth of the girder] reinforcement shall be placed to confine the 

prestressing steel in the bottom flange. The reinforcement shall not be less than 

No. 3 deformed bars, with spacing not exceeding 6.0 in. and shaped to enclose 

the strands” (AASHTO 2004). 

 

Although the 2004 AASHTO Section 5.10.10.2 does not refer to the origin of this 

provision, it is believed that it was based on the research sponsored by the Florida 

Department of Transportation (FDOT) in the late 1980’s which investigated the effect of 

confinement reinforcement on the shear capacity of prestressed/precast bridge girders 

(Shahawy, Robinson and Batchelor 1993) & (Csagoly 1991). 
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This newly developed requirement, in 2004 by AASHTO, now gave bridge girder 

designers some guidance as to an adequate amount and proper distribution of the bottom 

flange confining steel, while invoking a level of variability.  It was still up to the 

individual states to detail their girder confinement reinforcement in a matter which could 

satisfy the above mentioned spec. 

 

Very little is known on what effects confinement reinforcement has on the structural 

integrity of prestressed concrete members.  For this reason, researchers set out to study 

the variables which could impact the capacity of bridge girders designed by current and 

previous specification.     

 

1.2 Objectives 

The main objective of this study was to determine what impact, if any, confinement 

reinforcement has on the performance of prestressed concrete bridge girders.  Of 

particular interest was the effect confinement had on the transfer length, development 

length, and vertical shear capacity of the fore mentioned members.  A secondary 

objective of the study was with regards to 0.7” diameter prestressing strand.  This newly 

developed product provides for higher prestress force transfer than the currently used 

0.5” and 0.6” diameter strands.  Attention was paid to the effective transfer length and 

development length from the larger diameter strand relative to current specifications and 

design codes and its impact on implementation into future bridge girder design.  The 
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results from this study are from a most extreme prestress case, 0.7” strand, and will be 

applicable to girders which were produced with either 0.5” or 0.6” diameter strands.    

 

1.3 Tasks 

The following sections present the tasks set forth by the researchers to complete the 

aforementioned objectives of the study.  

 

1.3.1 Analytical Investigation of NU I-Girders 

An analytical investigation was performed by the university for the Nebraska Department 

of Roads (NDOR).  The proposed theoretical investigation was towards the effect of 

confinement reinforcement between the current NDOR bottom flange standard detail and 

that required by AASHTO LRFD specifications on the structural performance of NU I-

girders.  The 2004 AASHTO specified confinement reinforcement was significantly 

higher than NDOR’s standard bottom flange reinforcement specified in the Bridge 

Operations, Polices, and Procedures (BOPP) manual. Although NDOR adopted 

AASHTO LRFD specifications for superstructure design since 2004, the bottom flange 

reinforcement detail developed in the mid 1990’s was not updated to satisfy the latest 

AASHTO LRFD specifications.  

    

1.3.2 Full Scale Testing of 24 inch Tee-girders (T24) 

A total of eight tee-girders, with six 0.7” diameter strands, were cast and tested at 

university facilities to investigate the impact confinement reinforcement has on a 
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members transfer length, development length and shear capacity.  Tee-shaped girders 

were chosen because of their simplicity for forming, pouring, and stripping.  The transfer 

lengths were determined through concrete surface strain readings at the centroid of the 

prestressing force.  A total of fourteen girder ends were tested for characterization and 

determination of transfer length in the specimens.  In addition, eight mid-span flexural 

tests, for development, and four vertical shear tests were performed on all eight and two 

girders respectively.  Attention was paid to the amount and distribution of the 

confinement reinforcement at the end of each girder.       

 

1.3.3 Full Scale Testing of NU1100 Bridge Girders 

A total of three beams, incorporating thirty-four 0.7” diameter strands at 2” by 2” 

spacing, were cast with the aid of a local precaster.  NU I-girders are the predominant 

girder series specified during design and for construction of bridges in the state by the 

NDOR.  The NU1100 girder selection was based on the handling and testing capacity of 

the university’s structural laboratory.  All three specimens had different levels of end 

confinement for comparison purposes.  The length of the specimen along with the 

executed test setup allowed for each girder to be subjected to two tests.  A flexural test, at 

the American Association of State Highway Officials, Load Resistance Factor Design 

(AASHTO LRFD) predicted development length, was performed on each girder; after 

which, a vertical shear test was performed on one end of all three NU I-girders.   
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1.4 Organization 

This thesis is divided into four chapters.  Chapter 1 has provided an overview on the 

proposed topic as well as the objectives of the research and tasks performed to complete 

the study.  Chapter 2 presents a thorough and comprehensive literature review with 

regards to the transfer length and development length of prestressing strand, along with a 

pretensioned members design vertical shear capacity.  Chapter 3 provides results from 

analytical and experimental investigations, performed at the University of Nebraska, on 

the impact of confinement reinforcement on the transfer length, development length, and 

vertical shear capacity of concrete girders.  Finally, Chapter 4 presents a summary and 

conclusions from the research, as well as provides recommendations for designers and for 

future research.      

 

2 LITERATURE REVIEW 

 

2.1 Transfer Length Overview 

The transfer length of prestressing strand is an important calculation with regards to the 

shear design and release stresses at the girder ends. An over-estimated transfer length 

results in conservative shear design and higher top and bottom stresses at release. An 

under-estimated transfer length results in inadequate shear design and lower top and 

bottom stresses at release. The transferred force along the transfer length is assumed to 

increase linearly from zero at the free end of the strand to the effective prestress, fpe, at 

the end of the transfer length, lt.   
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The purpose of the research was to validate current AASHTO LRFD specifications with 

respect to different levels and distributions of confinement with the use of 0.7” diameter 

strands, not to study or propose a different equation when calculating the transfer length 

of the larger strand.  Therefore, the current AASHTO transfer length equation from 

section 5.11.4.1 will be the basis for justification of all results from testing.          

 

2.1.1 Definition of Transfer Length 

Transfer length is defined as the distance required, along the length of a prestressed 

member, for the fully effective prestress, fpe, to be transferred to the beam. 

 

2.1.2 Methods of Calculating Transfer Length 

2.1.2.1 2004 AASHTO LRFD 

According to the 2004 AASHTO LRFD Bridge Design Specifications Section 5.11.4.1, a 

fully bonded prestress strands’ transfer length, lt, is equal to:  

 

                  Equation 1 (AASHTO 5.11.4.1) 

  

Figure 2.1 shows a strands stress distribution from the free end of the member.  The 

shaded portion represents the part of the figure designated to and required for proper 

transfer of the effective stresses to the concrete.   
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Figure 2.1 AASHTO Idealized Steel Stress vs. Distance from Member End  

(AASHTO LRFD 2005) 

 

2.1.3 Previous Transfer Length Research 

The following reports present past research with respect to confinement reinforcement 

and its effect on the transfer length of prestress to concrete.  Although abundant, no other 

research on the basis of prestress transfer will be presented in this section, as it does not 

assist the researchers or provide any reference to comparable data for the subject being 

studied.    

 

2.1.3.1 Russell and Burns (1996) 

For this study, transfer lengths were measured on a wide variety of variables and on 

different sizes and types of cross sections.  The variables included number of strands, size 
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of strand (0.5 and 0.6), debonding, confinement reinforcement, and size and shape of the 

cross section. 

 

The number of specimens and the variables included in the testing represent one of the 

largest bodies of transfer length data taken from a single research project.  Altogether, 

transfer lengths were measured on each end of 44 specimens.  Of these specimens, 32 

were constructed with concentric prestressing in rectangular transfer length prisms.  The 

remaining 12 specimens were built as scale model AASHTO type beams with four, five, 

or eight strands. 

 

Primarily, transfer lengths were determined by measuring concrete surface strains along 

the length of each specimen.  By measuring the concrete strains and plotting the strains 

with respect to length, transfer length can be determined from the resulting strain profile.  

The strain profiles taken were then plotted versus the length of the specimen.  The 

method used, which was conceived by personnel from the research project, was labeled 

the “95 Percent Average Maximum Strain” method.  The method gives a transfer length 

value that is free from arbitrary interpretation because the “Average Maximum Strain” 

will not change significantly if one or two data points are either included or excluded 

from the average.  Its “inherent objectivity” is the major advantage derived by using the 

“95% AMS” method. 
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The results show that for both 0.5” and 0.6” strands, the transfer lengths for AASHTO 

type beams were remarkably shorter than the transfer lengths of the other test specimens.  

The data indicated that test specimens with larger cross sections and multiple strands 

possess significantly shorter transfer lengths.  Those results indicate that transfer lengths 

measured on relatively small, single strand specimens may not simulate transfer lengths 

of real pretensioned concrete members.  Typical pretensioned beams, with larger cross 

sections and multiple strands, could be expected to register shorter transfer lengths when 

compared to many of the typical research specimens. 

 

Confining reinforcement is analogous to hoop ties in a column.  Presumably, confining 

reinforcement surrounding the concrete and pretensioned strand would improve strand 

anchorage and shorten the transfer length.  However, the data from this study did not 

support this theory.  Transfer length measurements on specimens containing confining 

reinforcement are presented in Table 2.1. 
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Table 2.1 Effects of Confining Reinforcement on Measured Transfer Lengths  

(Russell and Burns 1996)

 

 

The average transfer lengths for specimens made with confining reinforcement are 32.8” 

for 0.5” strands and 45.4” for 0.6”. strands.  In comparison, specimens containing 

confining reinforcement possessed about 12% longer transfer lengths than those with the 

confinement reinforcing omitted.   

 

It is postulated that the confining reinforcement remained largely ineffective because the 

concrete remained relatively free from cracking throughout the transfer zone.  Even 

though confining reinforcement necessarily must increase each member’s elastic stiffness 

in the circumferential direction, the effect is apparently small compared to the elastic 

stiffness of concrete.  Fundamental mechanics prove that small radial cracking must 
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occur locally at the interface of strand and concrete.  However, these cracks do not 

usually become large enough to activate confining forces in the reinforcement hoops.   

 

Therefore, the confining reinforcement exerts little or no influence on the prestress 

transfer.  Conversely, for the general design case, pretensioned concrete members must 

be detailed to prevent propagation of splitting cracks that can occur at transfer and 

transverse reinforcement should not be eliminated from standard detailing.    

 

In the early and mid 1980’s, many testing programs focused on developing reliable 

design guidelines for the shear design of pretensioned concrete.  Tests performed in those 

research programs consistently demonstrated a direct interaction between shear failures 

and bond failures.  The failure modes from the research were difficult to distinguish and 

failures were labeled shear/bond failures.  Of significance, those shear/bond failures were 

sudden, violent and would represent catastrophic failures in real structures.  From the 

development length testing, it is imperative to recognize that the transfer length can 

adversely affect the strength and ductility of a pretensioned member.  Those failures 

highlight the need for the industry to collectively acknowledge the importance of transfer 

length in the safe design of pretensioned beams. 

 

2.1.3.2 Maguire (2009) 

The main subject of this report was to study the impact of 0.7” diameter prestressing 

strands in bridge girders.  Most of the study involved fabricating and testing bridge 
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girders with the larger diameter strand for its inclusion into AASHTO and acceptance by 

state DOT’s.  Included in the research is one test performed on four transfer prisms which 

took into account and modified the confinement reinforcement placed thorough them.  

The specimen were seven inches square and eight feet long with a single 0.7” diameter  

strand stressed to 0.75fpu (59.5 kips) placed longitudinally down the center.  The 

confinement ties consisted of five inch square #3 Grade 60 hoops placed at three, six, 

nine, and twelve inch centers.  Figure 2.2 presents the confinement layout for the subjects 

tested by Maguire. 

 

 

Figure 2.2 Transfer Prism Reinforcement (Maguire 2009) 

 

The transfer length testing was performed by the use of DEMEC disks glued to both ends 

and both sides of each prism.  Surface strain measurements were taken prior to release of 

the prestressing force, just after release, and fourteen days after release.  The 95% AMS 

method was performed for all transfer regions, accounting for sixteen initial and sixteen 
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final transfer results.  The results for each prism ends initial and final transfer length 

testing is provided by Figure 2.3.  Figure 2.4 is a plot of the prism’s transfer length versus 

the amount of confinement reinforcement.   

 

 

Figure 2.3 Initial and Final Transfer Lengths from Transfer Prisms (Maguire 2009) 

 

While there was a slight increase between the initial and final transfer lengths, the 

increase was not significant.  All measured transfer lengths were under both ACI and 

AASHTO predictions.  There was no discernable correlation between the transfer length 

and the amount of confinement reinforcement, implying no effect on the transfer length.   
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Figure 2.4 Transfer Length vs. Confinement Reinforcement (Maguire 2009) 

 

2.2 Development Length Overview 

The relationship of development length is necessary for identifying the critical sections in 

flexure and shear and calculating the capacities of the girder. An accurate estimate of the 

development length is important for the flexure design of girders. While an under-

estimated development length might result in a lower girder capacity at the sections 

within the development length, an over-estimated development length result in an 

uneconomical design with unnecessarily excessive reinforcement.   

 

The purpose of the research is to validate current AASHTO LRFD specifications with 

differing levels and distributions of confinement with the use of 0.7” diameter strands, 

not to study or propose a different equation when calculating the development length of 
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the larger strand.  Therefore, the current AASHTO development equation 5.11.4.2-1 will 

be the basis for justification of all results from testing.          

 

2.2.1 Definition of Development Length 

The development length of a prestress strand is the required distance along the length of a 

prestressed member, starting from the free end of the strand, for the ultimate design stress 

of the strand to be achieved.  

 

2.2.2 Methods of Calculating Development Length 

2.2.2.1 2004 AASHTO LRFD 

According to the 2004 AASHTO LRFD Bridge Design Specifications Section 5.11.4.2, a 

fully bonded prestress strands’ development length, ld, is greater than or equal to:  

 

            -
 

 
                            Equation 2 (AASHTO 5.11.4.2-1)  

 

Figure 2.5 shows a strands stress distribution from the free end of the member.  The 

shaded portion represents the part of the figure designated to and required for proper 

development of the effective stresses to the concrete.   

 



www.manaraa.com

18 

 

 

Figure 2.5 AASHTO Idealized Steel Stress vs. Distance from Member End 

(AASHTO 2004) 

 

Similar to a strands’ transfer length, the development length required is a result of the 

individual strands’ bond length.  If there is not enough bond length from the end of the 

girder, or end of debonding, to develop the stress in the strand to the match the ultimate 

stress from external forces, a bond failure is likely to occur resulting in the strand slipping 

relative to the concrete.  This will in turn reduce the section capacity of the girder over a 

longer distance required to establish full development of the prestress force. 

 

2.2.3 Previous Development Length Research 

The following report presents past research with respect to confinement reinforcement 

and its effect on the development length of prestress strand.  Many papers present 

research on, or propose new development length equations, but no other current research 
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was found to be done with respect to the proposed study.   No general papers on 

development length will be presented in this section, as they do not assist the researchers 

or provide any reference to comparable data for the subject being studied.    

 

2.2.3.1 FHWA (1994) 

In 1988 the FHWA issued a memorandum, restricting the use of seven-wire strands for 

pretensioned members in bridge applications.  In an attempt to reconcile some of the 

differences in the design recommendations, the FHWA requested an independent review 

of the recently conducted research on transfer and development lengths of pretensioned 

strands.  The author, Dale Buckner, fulfills the administration’s objectives by reporting 

findings and presenting recommendations and equations for determining strand transfer 

and development lengths. 

 

The author reviews the research performed with respect to confinement steel and 

commented.  Intuitively the effect of closed hoops or spirals around prestressing strands 

should constrict lateral expansion of concrete, therefore improving frictional resistance 

and improving the transfer length.  However, experimental evidence, performed at the 

University of Texas-Austin, shows the effects from confinement reinforcement to be 

negligible for members which do not split at release.   

 

With regards to a prestress strands development length, the author mentions the testing 

done previously by the FDOT.  The tests preformed indicated the effectiveness of the 
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steel against longitudinal splitting in the bottom flanges of end bearing members.  The 

report also mentions that the steel is beneficial in maintaining the integrity of girders that 

develop splitting cracks at transfer. 

   

2.2.3.2 Shahawy (2001) 

Part of the overall study presented by Shahawy in 2001 involved testing twelve forty-one 

foot long AASHTO Type II girders designed in accordance by the AASHTO 1991 

Interim Specification with approximately the same ultimate flexural strength (2100 k-ft) 

for their individual development lengths.  Figure 2.6 presents a cross-section of one type 

of girder tested.     

 

 

Figure 2.6 Section Details of Type C Test Girders (M. Shahawy 2001) 



www.manaraa.com

21 

 

Three different size 270 ksi, LRS prestressing strands were used in the investigation; 

namely, 1/2", 1/2" Special, and 0.6".  The main variables in the test program were the 

nominal strand diameter, available embedment length as a result of varying the distance 

of the applied loading, and the presence of confinement reinforcement in the tension 

flange.   After the precast beams were produced a top flange, 42 inches wide and 8 inches 

thick, was cast on all the specimens as shown in Figure 2.6. 

 

The effects of confinement steel were seen by comparing the results for those girders 

provided with confinement steel, beams A0-00R, A1-00R, C0-00R, and C1-00R, against 

those not provided with such reinforcement, beams A0-00RD, A1-00RD, C0-00RD, and 

C1-00RD.  Each girder end was tested using a single concentrated load.  The location of 

the load varied and the test span was shortened after the first end of the girder was tested 

to eliminate the opposite failed zone.  According to AASHTO, the presence or lack of 

confinement steel does not affect the predicted development length.  In all sixteen tests 

were performed by Shahawy for comparison with regard to confinement reinforcement.   

 

During testing all of the strands were continuously monitored by linear voltage 

differential transducers (LVDT).  The strains and deflections were also monitored. An 

important observation for Shahawy was the value of the applied moment at which initial 

strand slippage occurred.  The author reports that although the initial strand slippage 

occurred shortly after the appearance of the first shear crack, all of the girders continued 

to carry increasing load until complete bond slip of all strands occurred.  
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Figure 2.7 presents the results of development testing the AASHTO girders.  The green 

circles encompass the eight points on the graph which represent the tests done on the four 

girders without any confinement steel.  The other points are tests performed on specimen 

with confinement reinforcement consisting of No. 3 D-bars placed six inches apart for a 

distance of 1.0h.  The lines presented on Figure 2.7 represent a best fit approximation of 

the data for reference purposes only.  The circles and lines were not a part of the original 

figure; they were placed by the researchers for visual assistance and understanding to the 

reader. 

 

 

Figure 2.7 Effects of Shear Span to Depth Ratio on Strand Slip (M. Shahawy 2001) 

 

From Figure 2.7 the effects of confinement, as the loading gets closer to the end of the 

girder, are more pronounced.  Intuitively this makes sense.  As the bond length of the 

strand increases, the contribution from confinement reinforcement proportionally 
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decreases.  The author concludes, with respect to the effect of confinement, it was 

determined that higher strength and higher ductility can be expected with the use of 

confinement reinforcement in the tension flange.  The strength ratios, Mapplied/Mnominal, 

were also compared for girders with and girders without confinement.  There was high 

variability in the strength ratio results, but seven of the eight cases showed that the 

presence of confinement increased the capacity of the tested girders.  Overall, on average 

the actual capacity of girders with confinement steel increased by 23%. 

 

2.3 Vertical Shear Overview 

One critical check involved with bridge girder design is the vertical shear capacity of the 

section with respect to the expected ultimate shear seen by the member over its design 

life.  A shear failure is brittle by nature with little fore warning to the occupants of the 

structure.  Due to its sudden occurrence, shear design equations generally have lower 

resistance factors applied to them.  Although generally not controlling the overall design 

of bridge girders, due to their long spans, the shear capacity check must be performed on 

the girders in the pre-composite state for construction loading as well as post-composite, 

with the decking, for the applied live load from lane loading.   

 

The purpose of the research was to validate current AASHTO LRFD specifications for 

calculating a bridge girders vertical shear capacity with specific attention to differing 

levels and distributions of confinement along with the use of 0.7” diameter prestressing 

strand.  The study was not intended to propose a modified AASHTO equation for 
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calculating the nominal shear resistance of bridge girders.  Therefore, the current 

AASHTO shear resistance equations from Sections 5.8.3 and 5.8.4 will be the basis for 

justification of all results from testing.    

             

2.3.1 Definition of Vertical Shear 

The vertical shear force is defined as the resultant of the stresses acting, and distributed 

on a given cross section.  The resistance of the load by the girder must be provided by the 

combined contribution from the concrete and vertical shear reinforcement. 

  

2.3.2 Methods of Calculating Vertical Shear Capacity 

2.3.2.1 2004 AASHTO LRFD 

According to the 2004 AASHTO LRFD Bridge Design Specifications Section 5.8.3.3, 

the nominal shear resistance of a prestressed concrete section, Vn, is equal to the lesser 

of:  

Vn        Vs          Equation 3 (AASHTO 5.8.3.3-1) 

Vn                       Equation 4 (AASHTO 5.8.3.3-2) 

 

Where: 

         β             Equation 5 (AASHTO 5.8.3.3-3) 

   
          θ     α    α

 
     Equation 6 (AASHTO 5.8.3.3-4) 

    

       Vp = Effective prestressing force; positive if resisting the applied shear 
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AASHTO Section 5.8.3.3, from which the previous equations were taken, is a simplified 

approach for calculating the nominal shear resistance of a prestressed concrete section.  

Article 5.8.3.1 explains methods for calculating the shear stresses of a section by a more 

complex detailed section analysis.  Shear calculations, performed by the researchers for 

design and validation of the research specimen, were done by means of the detailed 

method.       

 

2.3.3 Previous Vertical Shear Research 

The following reports present past or current research with respect to confinement 

reinforcement and its effect on the vertical shear capacity of different bridge girder 

sections.  Many papers present research with regard to anticipating a member’s shear 

capacity, however, no papers on shear without reference to confinement and prestressing 

will be presented in this section, as they do not assist the researchers or provide any 

reference of comparable data for the subject being studied.    

 

2.3.3.1 Csagoly (1991) 

In excess of 1,300 AASHTO IV beams were prefabricated for the approaches of the 

Florida Sunshine Skyway Bridge over the Tampa Bay entrance. The end zones of some 

of these prestressed concrete beams showed honey-combing and cracking, indicating the 

possibility of reduced shear resistance. Pilot tests which were carried out on two such 

beams confirmed that possibility. Under the aegis of the Florida Department of 

Transportation (FDOT), the author performed 16 shear tests on eight AASHTO IV 
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beams, specially fabricated, in order to determine the cause(s) of the substandard 

performance observed.  The three independent variables involved for review in this study 

were, a) 50% shielding or no shielding of the strands, b) confinement or no confinement 

cage in the end zone, and c) coated or uncoated web steel. 

 

The shear span for all 16 tests was 75 inches, or about 1.21 times the structural height of 

the specimen, including the 54 inch AASHTO beam with an 8 inch deep concrete slab. 

Regardless of the combination of variables, the failure pattern was observed to be 

remarkably identical and in all cases, several diagonal web cracks developed, one of 

which - not necessarily the first or last that had appeared - dilated out-of proportion to the 

others.  That crack, was referred to as the “significant” or "S" crack, completely separated 

the bottom chord, the web, and bottom part of the top chord (the slab) and was confined 

by what appeared to be a compression zone. 

 

The "S" crack invariably intercepted the development length, even at times the transfer 

length of the AASHTO beams. The failure was always precipitated by the slip of strands, 

after which a considerable resistance had been retained, but the peak value was never 

regained.  An earlier study performed by Maruyama and Rizkalla at the University of 

Manatoba, also brought attention to the significance of the "S" crack intercepting the 

strands within the development length. 
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Where the “S” crack intercepts the development length of the prestressing strands, the 

bonded or anchored strength of the strands should be calculated on the basis of bond 

stress distribution between the crack and he end of the beam.  Both the 1996 AASHTO 

Standard Specifications for Highway Bridges and the 2004 AASHTO LRFD Bridge 

Design Specifications provide only for the transfer and development lengths, and 

therefore cannot directly be used in conjunction with a mechanical shear model. 

 

Over the years several jurisdictions abandoned the confinement steel, as well as the end 

block, in order to reduce cost of pre-cast, pre-stressed concrete beams.  This change was 

supported by several tests, either carried out or sponsored by the Portland Cement 

Association (PCA).  The majority of these tests, both static and dynamic, included third-

point loading, in which the environment leading to serious inelastic straining of and 

subsequent shear failure in the end zone may not easily be attained, as the beam tends to 

fail in flexure. 

 

In an appropriate shear test, the shear span should not normally exceed 2.0 to 2.5 times 

the structural height (h) of the beam.  The Florida DOT tests with a shear span of 1.21h 

were therefore valid shear tests as all beams exhibited pronounced longitudinal cracking 

at the level of strand rows, as well as at the center line of the bottom of the lower flange.  

Obviously the cracks observed at the level of strands must have been caused by the 

wedging or Hoyer effect of the strands.  
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The author concludes that a plausible explanation for the crack in the bottom is exhibited 

in Figure 2.8, a strut-and-tie model which can be drawn to approximate the magnitude of 

the transverse splitting force (T), resulting from the spreading of the reaction force (R) 

above the bearing. 

 

 

Figure 2.8 Splitting Force in Bearing Area (Csagoly 1991) 

 

By this calculation an AASHTO IV beam would experience a splitting force of T = 0.161 

R, which translates to 56.3k for a 350k reaction force. This T-force, depending on other 

factors such as the lateral bearing resistance, resistance by the horizontal stirrup legs and 

the longitudinal distribution of the T-force, may conceivably cause cracking. If the 

significant crack penetrates the end zone, where confinement steel is present, such steel is 

incorporated in the calculated force Vs. Unfortunately; there is no way by which the 
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enhancement of bond due to confinement may be assessed with complete confidence.  

Consequently only the direct shear effect of this steel was considered by the author. 

 

Testing found that on average the beams with confinement steel possessed 13.2% more 

shear resistance than those without any confinement.  It is of interest to note that neither 

the ACI nor AASHTO directly incorporates the effects of confinement steel in the shear 

design of prestressed concrete beams. 

 

It is often difficult to determine whether failure is precipitated by shear or by the slip of 

strands. The model assumes that all active strands slip simultaneously. In reality the slip 

is gradual, one or two strands at a time, always starting at the top row. As the shear 

resistance depends to a large degree on the compression force, which in turn is being 

limited by the anchored strand force, a gradual deterioration by slip may lead to what 

appears to be a genuine shear failure. It is therefore quite conceivable that the two modes 

do closely interact. 

 

2.3.3.2 Shahawy, Robinson, and deV. Batchelor (1993) 

The main objectives of this study was to determine experimentally the actual values of 

transfer and development lengths of prestressing strands, effect of strand shielding 

(debonding) on development length, shear and fatigue behavior, and the shear strength as 

it compares to existing and proposed code provisions.  This shear capacity study was 

particularly significant in light of the then proposed changes to the AASHTO code for the 
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design of members subject to shear and torsion.  This report presented and compared the 

test results with predictions based on the 1989 AASHTO Standard Specifications for 

Design of Highway Bridges, the 1990
 

and 1991(current)
 
Interim Specifications of that 

code, and the proposed revisions
 

of the code based on the Modified Compression Field 

Theory (MCFT). 

 

The test program consisted of thirty-three (33) 41 feet long AASHTO Type II prestressed 

concrete girders, designed in accordance by the AASHTO 1991 Interim Specification 

with approximately the same ultimate flexural strength (2100 k-ft). Three different size 

270 ksi, LRS prestressing strands were used in the investigation; namely, 1/2", 1/2" 

Special, and 0.6". In addition, the amount of shear reinforcement was varied by changing 

the area and spacing of stirrups. Shear reinforcement ranged from the minimum (M) steel 

permitted by AASHTO, to three times (3R) the amount required for the design dead and 

live loads.  

 

The main variables in the test program were the percentage of shielded strands (25 and 

50%), the web shear reinforcement ratio and beam end details, and the size of the 

prestressing strands. After the precast beams were produced a top flange, 42 inches wide 

and 8 inches thick, was cast on all the specimens as shown in Figure 2.9. 
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Figure 2.9 AASHTO Beam Cross Section (Shahawy et al. 1993) 

 

The effects of confinement steel were seen by comparing the results for those girders 

provided with confinement steel against those not provided with such reinforcement.  

According to AASHTO, the presence or lack of confinement steel does not affect the 

predicted shear capacities. However, the test results clearly show that test shear strength 

was reduced when confinement steel was not present.  

 

Ten beams were designed, fabricated, and tested for comparison as beams A0-00R, A1-

00R, A2-003R, C0-00R, and C1-00R included confinement, while the corresponding 

beams A0-00RD, A1-00RD, A2-003RD, C0-00RD, and C1-00RD did not contain any 

confinement.   
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The values for the tests shears at both ends of A0-00-R were much greater than the 

predicted capacities, the ratio of the test values to the AASHTO Code values being 1.41 

and 1.25 for the TEST NORTH and TEST SOUTH values, respectively. Comparatively 

the test shears of beam A0-00-RD were greatly reduced in comparison to A0-00-R. The 

test shears in the former specimen are approximately equal to the current AASHTO 

predicted values, the ratios of test capacity to current AASHTO capacity being 1.06 and 

1.03 for TEST NORTH and TEST SOUTH, respectively.  

 

The results for specimens Al-00-R and A1-00-RD also show a similar reduction in shear 

capacity when confinement steel is not present. The shear capacity for Al-00-R with 

confinement steel is greater than the capacity predicted by the current AASHTO Code, 

the test to AASHTO ratios being 1.09 and 1.31 for the TEST NORTH and TEST 

SOUTH, respectively. However, the shear capacity is reduced in beam Al-00-RD, for 

which, the ratios of the test capacity to AASHTO capacities were 0.93 and 1.19, 

respectively for the TEST NORTH and TEST SOUTH values.  For girders A2-00-3R and 

A2-00-3RD, as well as C0-00R and C1-00R, the failure mode was that of flexure, and 

therefore was not able to be compared in shear.  Figure 2.10 graphically presents the 

results from testing of the A-series girders. 
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Figure 2.10 Shear Comparison (Shahawy et al. 1993) 

 

From testing, the presence of confinement steel increased the shear capacity for the TEST 

SOUTH values by 10% from 189k to 208k.  Similarly, for the TEST NORTH values, the 

presence of confinement steel increased the shear capacity by 17% from 179k to 210k. 

 

Another test of note in the study involved girder Bl-00-0R, which contained no shear 

reinforcement.  The predicted shear capacities for this beam were 90k for TEST NORTH 

and 88k TEST SOUTH while the actual shear capacities found for this beam were 166k 

for TEST NORTH and 155k TEST SOUTH.  These figures indicate that the codes 
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greatly under-predict the shear contribution of the concrete, V
c
, to the overall shear 

strength.  The then current AASHTO code gave its best approximation, but even that 

value was an average of only 54% of the test value. 

 

Notable conclusions from this report were, 1) the provision of confinement steel for the 

prestressing strands at the end regions of a girder increases their shear capacity, 2) the 

1991 AASHTO code predicts shear capacities which are adequate for girders with or 

without confinement steel, 3) both the current AASHTO code and the proposed code 

greatly under-estimate the shear strength provided by concrete with the current AASHTO 

code the less conservative of the two.  This study demonstrated the beneficial effect of 

confinement steel in delaying bond failure of prestressing strands, and in enhancing shear 

capacity.  

 

2.3.3.3 Ross (2010) 

Work has begun at the University of Florida to experimentally evaluate confinement 

reinforcement in pretensioned concrete girders.  The test program is performing full-scale 

tests on specimen with variable 0.5 and 0.6 in. strand patterns with and without 

confinement.  Figure 2.11 presents the test specimen. 
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Figure 2.11 Specimen Details (Ross 2010) 

 

In order to test an unconfined section versus confined the end of a pretensioned bridge 

girder was removed as shown in Figure 2.12 and both ends were tested independently 

from each other.  The supports were placed at 5.5 inches from one end and 11 feet 2 

inches from the end support.  A single point load was placed at a distance of 2 feet 10 

inches from the end of the girder, 2 feet 4.5 inches from the support, for a tested shear 

span of almost exactly 1.0h.     
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Figure 2.12 Specimen Fabrication and Test Setup (Ross 2010) 

 

Figure 2.13 shows the typical reinforcing and confinement details of test specimens. 

 

 

Figure 2.13 Specimen Reinforcement and Confinement (Ross 2010) 
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The results from testing are presented in Figure 2.14 and Figure 2.15.  One preliminary 

conclusion was that the addition of confinement has negligible effect on the elastic 

behavior of the test girders.  Another conclusion was that the confinement reinforcement 

has negligible effect on the initial strand slip, but does aid in maintaining the strand 

capacity after the initial slippage. 

   

 

Figure 2.14 Shear vs. Displacement (Ross 2010) 
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Figure 2.15 Shear vs. Strand Slip (Ross 2010) 

 

Two notable conclusions from the initial test results at the University of Florida are: 1) 

the incorporation of confinement steel as prescribed by AASHTO LRFD Section 

5.10.10.2 increases the shear capacity of the given girder by approximately 15% and 2) 

the overall ductility of the structure significantly increases, with the confined beam 

experiencing a deflection of 200% to that of the unconfined.  

 

Future work at the university will include full-scale testing of more girders as well as an 

analytical investigation incorporating finite element modeling for comparison and 

justification of the test data. 
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3 ANALYTICAL & EXPERIMENTAL INVESTIGATION 

 

3.1 Analytical Investigation 

3.1.1 Concrete Strength  

The effects of confinement on the compressive strength of concrete has been observed 

and documented by many researchers.  It makes logical sense that if you confine Material 

A with another stronger material, Material B, and then measure the axial force required to 

yield Material A, that force should be higher than the same test performed on Material A 

without the benefit of any confinement.  By resisting the lateral displacement of the 

confined material, an increase in its overall strength can be achieved.  Figure 3.1 presents 

a stress-strain diagram for confined and unconfined concrete.      

 

 

Figure 3.1 Proposed Stress-Strain Relationship (Saatcioglu and Razvi 1992) 
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Research was done in the early 1990’s by Saatcioglu and Razvi on the subject of concrete 

confinement and its effects on the overall compressive strength of concrete.  They tested 

ninety-seven specimens, with varying cross-sections, and derived an equation to calculate 

the concrete strength of a confined specimen.  Their research found the general equation 

for confined concrete to be: 

f cc          k1           Equation 7 

 

The term f’co is taken as: 

                  Equation 8 

 

The unconfined concrete strength may be different than that obtained from standard 

cylinder testing.  A modification factor, MF, may need to be applied to adjust the cylinder 

results to a better approximation of f’co.  Modification factors from 0.85 to 1.00 have 

been documented in literature.  All sample calculations for the research will use an MF of 

1.00, therefore standard cylinder test results can be used directly.  

Where the coefficient k1 was calculated as: 

k1   6.7     
            Equation 9 

 

The term fle, which represents the uniform confining pressure, for a square section is: 

fle   
          

   
          Equation 10 
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Whereas for a rectangular section, the fle term is calculated as: 

fle   
                

        
          Equation 11 

 

The k2 term is used to reduce the average lateral pressure for concrete which has large 

spacing between lateral reinforcement.  For cases with closely spaced lateral 

reinforcement k2 is equal to 1.0.  For our calculations the strands, which are spaced at two 

inches horizontally and vertically, will be considered the longitudinal reinforcement and 

k2 will be set at 1.0, which is the most conservative case.  Figure 3.2 presents the 

distribution of lateral pressure from the confined concrete to the reinforcement.  It also 

explains the calculation of fl for the steel.  

   

 

Figure 3.2 Computation of Lateral Pressure from Hoop Tension (Saatcioglu and Razvi 

1992) 

 

Figure 3.3 presents the lateral distribution between the ties of a rectangular member.  

From the figure, it can be seen that the pressure is dependent on the longitudinal 
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reinforcement.  This is where the k2 term becomes relevant.  The actual calculation of k2 

is:    

        
  

 

  

  

 

  
      Equation 12 

 

In the k2 equation, sl is the spacing between the lateral reinforcement.  As the lateral 

spacing increases, the term k2 decreases.   

 

 

Figure 3.3 Distribution of Lateral Pressures (Saatcioglu and Razvi 1992) 

 

Knowing of the phenomena introduced by confinement, the researchers looked into what 

effect the bottom flange confinement reinforcement had on the actual strength of the 

concrete surrounding the prestressing steel of bridge girders.  The two types of girders 

that were looked at were the shapes to be utilized for the experimental work.  The first is 



www.manaraa.com

43 

 

a tee girder and the second is an NU I-girder.  Figure 3.4 and Figure 3.18 present those 

two cross-sections.  Using the equations derived by Saatcioglu and Razvi along with 

confinement specifications prescribed in AASHTO 5.10.10.2, Table 3.1 presents the 

results from confinement on both girder sections. 

 

Table 3.1 Confined Concrete Strength 

 

 

The T24 concrete strength was calculated using confinement for a square section, while 

the NU1100 was calculated with a rectangular section.  There is quite a difference in the 

effects from confinement on the two different sections.  Initially the effects from 

confinement on the T24 section look good, but the final ratio presents a maximum case, 

which may never exist in the life of the girder as it takes into account three assumptions.  

The first assumption for both girders is that the confinement reinforcement has reached 

f'co 8,000 psi f'co 10,000 psi

k1 2.12 k1 2.84

k2 1.00 k2 1.00

fl 880 psi flex 157 psi

As 0.22 in
2

As 0.22 in
2

fyt 60,000 psi fyt 75,000 psi

bc 5.00 in bcx 35.00 in

s 6.0 in s 6.0 in

fley 917 psi

As 0.22 in
2

fyt 75,000 psi

bcy 6.00 in

s 6.0 in

fle 268 psi

f'cc 9,862 psi f'cc 10,446 psi

f'cc / f'co 1.23 f'cc / f'co 1.04

T24 NU1100
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yielding.  The second assumption is that the k2 factor is indeed 1.0.  The third is that the 

MF factor for f’co is 1.0.  With all three assumptions, then the concrete strength could 

possibly reach a confined strength presented in Table 3.1.    

 

Also, the overall effects from confinement are drastically reduced for larger I-girder or 

box cross-sections.  Taking into account the assumptions and standard deviation between 

specimens, the equations presented show there is no significant increase in the confined 

concrete strength of those members.  From these results, the researchers concluded that 

there is no conclusive evidence supporting a significant effect from confinement on the 

concrete strength around the prestressing strands.  This is mainly due to the relatively 

small amount of confinement around a very large area, without the presence of any 

longitudinal reinforcement.  

 

3.1.2 Transfer & Development Length 

Through the years quite a little research has been done on the subject of prestress transfer 

and the development length of prestressing strands.  Many new equations for both 

transfer and development lengths have been derived and proposed.  Neither the current 

AASHTO equations, nor any proposed equations for transfer or development, take into 

account any effect from confinement reinforcement.  Interestingly enough, the ACI-318-

08 specification does include a variable, Ktr, which does account for transverse 

reinforcement in the development of longitudinal reinforcing bars.     
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        Equation 13 (ACI 318-08 12-2) 

 

ld    
 

  

  

     

      

 
       

  
 
        Equation 14 (ACI 318-08 12-1) 

 

Table 3.2 presents some of the more recently developed equations for transfer length and 

development length.  None of the selected equations proposed by Ramirez and Russell, 

Kose and Burkett, Lane, or Mitchell include a term for confinement, but all do include 

either an initial concrete strength, f’ci, or a final concrete strength, f’c.    

 

Table 3.2 Transfer Length and Development Length Equations 
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Although some of the recent research proposing new equations for the AASHTO 

development and transfer lengths do include a term for the strength of the concrete, it is 

the opinion of these researchers that the confinement reinforcement in the bottom flange 

of bridge girders has an insignificant effect on either the current AASHTO LRFD transfer 

or development equations due to the minimal impact on the concrete strength around the 

strands, as explained in the previous section. 

 

3.2 Experimental Investigation 

This section presents the tested specimen and corresponding results from the PKI 

structures lab in Omaha, Nebraska.   

 

3.2.1 Girder Design, Fabrication, and Test Setup 

3.2.1.1 T24 Girder Design 

Eight twenty-eight foot long tee-girders were designed for testing the effects of 

confinement reinforcement on the transfer length, development length, and shear capacity 

using different confinement patterns with different concrete strengths.  Each girder was 

pretensioned with six 0.7” diameter Grade 270 low-relaxation strands, stressed to 75% fpu 

(59.5 kips), distributed in two rows (3 strands each) with 2” horizontal and vertical 

spacing as shown in Figure 3.4.  The overall depth of each girder was 24”; each had an 8” 

wide web and a 32” wide top flange.  The overall length of the T24 girders was chosen 

with respect to satisfaction of AASHTO LRFD Equation 5.11.4.2-1.  Using a strain 

compatibility analysis of the section to determine the stress in the girders strands, found 
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Appendix A, and then incorporating those values into the mentioned equation, the length 

required to fully develop the 0.7” diameter strands was: 

        -
 

 
                         Equation 15 

 

Therefore, satisfaction of the strands full development could be achieved if the specimen 

were twenty-eight feet in length, tested at their mid-span, and the section reached its 

nominal flexural capacity. 

 

An 8 ksi self consolidating concrete (SCC) mix was specified for design and fabrication 

while four 0.6” diameter strands, stressed to 7.5% fpu (3.2 kips), were used in the top 

flange to control cracking at release. Shear reinforcement of two WWR sheets of 

D20@12”, Grade 75, was calculated and incorporated in the design to ensure that the 

girders reached their ultimate flexural capacity prior to their shear capacity. End zone 

reinforcement of two 0.5” coil rods were welded to the 0.5” bearing plate at each girder 

end to control cracking due to bursting force.  Transverse top flange reinforcement 

consisted of #3 Grade 60 bars placed at twelve inch intervals.  Figure 3.4 shows the 

typical dimensions and reinforcing details of the T24 girder test specimens.   
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Figure 3.4 Cross Section of T24 Girder 

 

To evaluate the effect of confinement reinforcement, No. 3, Grade 60, 5” x 5” square 

confinement ties were used in all specimens at variable spacing (V) along a distance (L).  

Figure 3.5 shows these parameters on the side view of the T24 specimen, while Table 3.3 

lists the values of these parameters in the eight specimens.  It should be noted that the 

2004 AASHTO LRFD confinement reinforcement was used as the base confinement in 

all comparisons. Table 3.3 also presents the girder designation used for comparison, 

which was set up as follows: Girder Shape - Confinement Spacing - Confinement 

Distribution Distance - Concrete Strength Designation (A for 13,500 psi, B for 11,900 

psi, C for 9,000 psi, and D for 11,200 psi).  

 

1'-10"

8"

2"

#3@12"

2"

#3@V

10"

1'-9"

3"

2'-0"

1'-0"8"

2"

5"

2'-8"

D20@12"

2"

1'-7"

D8@8"
(2) 0.5" Coil Rods

1/2" Bearing

Plate

1'-3"

(4) 0.6" Strands

(6) 0.7" Strands

Mid-Span Section End-Section

4"10"

24T
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Figure 3.5 T24 Confinement Reinforcement Distribution 

 

Table 3.3 T24 Girder Designation and Confinement Reinforcement 

 

 

3.2.1.2 T24 Girder Fabrication 

The eight T24 girders were fabricated and cast in the prestressing bed at the PKI 

structural laboratory on the University of Nebraska-Omaha campus.  Expanded 

Polystyrene (EPS) forms were used to form the eight girders because of their ease of 

0.7" Strands

0.6" Strands

Shear Reinforcing

(not shown for clarity)

11
2" V

2'-0"

#3 confinement ties

28'-0"

L

Number Girder Designation Size No. per end Spacing-V (in) Distribution-L (in)

1 T-6-1.5h-A #3 6 6.0 36.0

2 T-6-0.5l-A #3 28 6.0 168.0

3 T-6-1.5h-B #3 6 6.0 36.0

4 T-4-1.0h-B #3 6 4.0 24.0

5 T-6-1.5h-C #3 6 6.0 36.0

6 T-4-1.0h-C #3 6 4.0 24.0

7 T-12-0.5l-D #3 14 12.0 168.0

8 T-4/6-1/1.5h-D #3 6 4.0 / 6.0 24.0 / 36.0

Test Confinement
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setup, stripping, mobility, and light weight.  A layer of plastic sheeting was used to cover 

the prestress bed floor and the EPS forms so they could be used for multiple pours.  

   

 

Figure 3.6 T24 End Confinement 

 

The fabrication sequence for the T24 girders proceeded as listed: 

1) Plastic sheeting was placed on the floor of the prestressing bed.  

2) Chamfer was stapled to the bed to secure the plastic and provide adequate spacing for 

the forms. 

3) Six 0.7” diameter strands were threaded the length of the prestress bed, through the 

end plates and confinement loops.  

4) Each strand was chucked at both ends and tensioned to 75% fpu. 

5) The confinement was tied to the six now stressed bottom strands.  

6) Four 0.6”diameter strands were threaded for location in the top flange.  

7) Vertical shear reinforcement was then tied to the bottom and top strands. 
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8) Transverse flange reinforcement was placed and tied to the top of the top strands. 

9) The EPS formwork was placed under the extended plastic and secured with bracing. 

10) The plastic was smoothed and attached to the foam.  All joints were secured from 

leaking. 

 

Figure 3.6 shows an end of a T24 girder with the confinement and shear reinforcement 

tied in, prior to the EPS forms being secured.  Figure 3.7 shows the final setup of the EPS 

forms prior to placement of the concrete.   

 

 

Figure 3.7 T24 Forming 
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The concrete was delivered to the structures lab at PKI and upon arrival a spread 

diameter test was performed.  A high range water reducer was added to the batch at the 

lab in order to provide a minimum 24” spread of the mix to increase flowability as seen 

in Figure 3.8.   

 

 

Figure 3.8 T24 Concrete Spread 

 

This step was added to ensure an unvoided concrete girder could be produced with little 

finish work and no vibration.  Figure 3.9 shows finishing of one of the T24 girders in the 

structures lab at PKI.  Four inch cylinder specimens were taken from each batch for 

testing of the concrete strength at release and on the day of testing.  Burlap was placed 

over the forms after finishing off the tee girders and was kept moist during curing for a 

minimum of two day.  After three days the concrete reached the desired initial strength, 
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f’ci, and the prestress force was gradually released from the prestress bed and the strands 

were cut. 

 

 

Figure 3.9 T24 Finishing 

 

3.2.1.3 T24 Girder Test Setup 

The following sections discuss the setup and procedure followed with regards to testing 

the T24 girders.   

  

3.2.1.3.1 Transfer Length 

To measure the transfer length from the prestressing strands in the T24 girders, a series of 

Detachable Mechanical gauges (DEMEC gauges) were placed starting 1” from each 
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girder end at an elevation equal to the centroid of the prestressing force.  The DEMEC 

gauges were spaced at approximately 2 inches, over a distance of 44 inches, at which 

time the spacing changed to approximately 4 inches for another 32 inches. Those 

measurements were based on the expected AASHTO LFRD transfer length of 42 inches, 

from Section 5.11.4.1, and a maximum possible transfer length of 100db or 70 inches.  

Figure 3.10 provides a drawing of the DEMEC gauge layout.   

 

 

Figure 3.10 T24 Transfer Length Test Setup 

 

DEMEC readings were taken before release of the prestress force, immediately after 

release (1-day), three days after release, and 14 days after release using a W.H. Mayes & 

Son caliper gauge as shown in Figure 3.11.  The change in the measured distance 

between DEMEC gauges was used to calculate the surface strain of the concrete at the 

girders’ different age. 

3.937" DEMEC Disks
1.969"

60*db - Expected Transfer Length (42")

100*db - Possible Transfer Length  (70")

3.0"
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Figure 3.11 Measuring Strain in Concrete for Transfer Length Estimation 

 

The 95% AMS Method was then utilized, with the measured data, to calculate the 

transfer length of the prestress force into the girder.  

 

3.2.1.3.2 Development Length 

To determine the effects from confinement on the development length of the T24 

specimen, a single point load was applied to the top flange at mid-span of the fabricated 

girders as shown in Figure 3.12 and Figure 3.13.   The bearing rollers were located at a 

distance of three inches in from the end of the girder, creating an overall unsupported 

span of 27’-6”.  The loading location was chosen to satisfy current AASHTO 

specifications for required length to fully develop prestress strand, as described in 

previous Section 3.2.1.1.  The applied load and corresponding mid-span vertical 

deflection were monitored and recorded as the load increased up to failure.  
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Figure 3.12 T24 Development Length Test Setup (CAD) 

 

 

Figure 3.13 Development Length Testing Setup 

 

While testing, each girder was visually inspected and cracks were periodically marked to 

identify the failure mode. Also, bottom strand slippage was monitored using six 

potentiometers (three at each girder end), as shown in Figure 3.14.    

28'-0"

14'-0" 14'-0"

3" 3"

Linear Potentiometers

(bottom row of strands)

String Potentiometer

24T

P
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Figure 3.14 Potentiometers Attached to the Bottom Row of Strands 

 

3.2.1.3.3 Vertical Shear 

Four tests were performed on two of the eight T24 girders.  The girders were loaded at a 

distance of 2.08h from the end support.  This distance, for loading, was chosen based on 

previous shear testing research and reporting on appropriate shear spans. (Csagoly 1991) 

 

 

Figure 3.15 T24 Vertical Shear Test Setup (CAD) 

28'-0"

4'-5" 9'-1"

3"

14'-6"13'-6"

Linear Potentiometers

(bottom row of strands)

String Potentiometer

24T

P
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Figure 3.15 presents the CAD drawing for setup of the tests, while Figure 3.16 presents 

an image of the setup prior to one of the tests.  The overall span of the girders for the 

shear tests was reduced to 13’-6”.  This was done in order to perform two tests, one on 

each end, of the two T24 girders.  Also, these girders were first tested for development; 

consequently the mid section of the tee girders was damaged from the previous test.  By 

moving the support near the mid-span of the girder, the damaged portion at the new 

support location would see no moment and roughly one third of the shear from the 

applied loading.  

 

 

Figure 3.16 T24 Vertical Shear Test Setup 

 



www.manaraa.com

59 

 

While testing, each girder was visually inspected and cracks were periodically marked to 

identify the failure mode. Also, bottom strand slippage was monitored using three 

potentiometers on the tested end as shown in Figure 3.17.    

 

 

Figure 3.17 Vertical Shear Test Strand Instrumentation 

 

3.2.1.4 NU1100 Girder Design 

Three forty foot long NU1100 girders were designed by the researchers for testing the 

effects of confinement reinforcement on the transfer length, development length, and 

shear capacity of commonly specified bridge girders in the state of Nebraska.  The depth 

of the NU1100 girder is 43.3”; they have a 5.9” wide web, a 38.4” wide bottom flange 

and a 48.2” wide top flange.   
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Each girder was pretensioned with thirty-four 0.7” diameter Grade 270 low-relaxation 

strands, stressed to 75% fpu (59.5 kips), distributed in three rows with eighteen in the 

bottom, fourteen in the middle, and two strands in the top row at 2” horizontal and 

vertical spacing as shown in Figure 3.18.  Four 0.5” diameter strands were placed and 

fully stressed to 75% fpu (30.9 kips), in the top flange of the girders to control cracking 

upon release of the prestress force.  As designed for all three NU specimens, one end of 

the girders had eight strands debonded.  The end designated with the debonded strands 

was to be used during the shear testing of the girders.  This criterion was implemented as 

it is common practice for bridge girders designed in the state of Nebraska to have 

debonded strands on each end, in lieu of draping them.  There were four debonded 

strands in the bottom row for a distance of 3.5 feet, and four strands debonded in the 

middle row for a distance of 7 feet.  Figure 3.18 designates the specified debonded 

strands with a box.        

 

Each girder was designed with a 0.5” by 36” by 18” bearing plate at each end.  Eight 0.5” 

diameter by 5” steel studs were welded to the bearing plates, along with four 0.75” by 

46” coil rods with nuts which extended through the top flange into the decking.  The 

shear reinforcement was consistent for all three girders.  Two layers of Grade 75 welded 

wire mesh D20@2” were placed throughout the web with 1.125” clearance to the edge.  

Additional WWM reinforcing steel, Grade 75, placed in the top flange of the NU1100’s 

consisted of D20@12” transverse and D20@6” longitudinal to reduce concrete stresses 

and cracking upon release.      
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Figure 3.18 Cross Section of NU1100 Girder and Deck 

 

The overall length of the NU1100 girders, forty feet, was chosen as to successfully 

perform a development length test on one end and a shear test on the opposite.  It was 

necessary for the girders to be long enough to test one end while not yielding any of the 

elements in the opposite end.  Limits imposed on the researchers by the structural lab 

equipment also contributed to the specification of the girder section and overall length.   

 

Figure 3.19 provides the detail used by the researchers for comparison on the project.  

The bottom pieces of the confinement were made up of either D4 or D11 Grade 75 mesh, 

while the cap bar always consisted of a #3Grade 60 bent bar.  One detail provided to the 

fabricator for incorporation into the girders was specified by the 2008 NDOR BOPP, one 
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came from AASHTO LRFD Section 5.10.10.2, and the third was a combination of the 

first two. 

 

Figure 3.19 NU1100 Confinement Reinforcement Detail 

 

Although both ends of each girder were provided the same confinement reinforcement 

detail, to evaluate the effect of confinement reinforcement each NU1100 was designed 

with a different amount and distribution of confinement.  Table 3.4 presents the 

confinement reinforcement and cap bar placement specific to each girder.   

 

Table 3.4 NU1100 End Confinement 
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The concrete specified for girder design and fabrication was a SCC mix with a minimum 

strength at release of 7.8 ksi, and an f’c at twenty-eight days of 10 ksi. 

 

The design of the NU1100 specimen incorporated the addition of a concrete deck to be 

placed prior to any testing.  The deck was designed to be 7.5” thick, the full width of the 

girders’ top flange.  The deck concrete was specified to have a final strength of 8 ksi, 

which was done to simulate a 7.5” deck comprised of 4 ksi concrete for a girder with 

eight foot spacing.  Welded wire mesh was used for reinforcing the deck as two rows of 

D20@12” transverse and D20@6” longitudinal steel sheets were placed the length of the 

girder. 

 

3.2.1.5 NU1100 Girder Fabrication 

Three NU1100 girders topped with 7.5” of decking were fabricated at Coreslab 

Structures in Bellevue, Nebraska.  The details of the three girders were provided to the 

prestress company by the researchers in preparation of ordering materials and scheduling 

manufacture.  The placement of the reinforcing steel, as well as the casting process was 

monitored by researchers at the university.   Figure 3.20 presents the girders after the 

shear and confinement reinforcement was set, prior to placement of the forms’ sides.  

Figure 3.21 shows the confinement reinforcement placed for girder three, which is a 

combination of AASHTO requirement for the first six feet and the NDOR detail in the 

middle.  
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Figure 3.20 NU1100 Reinforcement 

 

Figure 3.21 NU1100 Confinement Reinforcement  
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Figure 3.22 is of pouring the three NU1100 girders at the precast plant and Figure 3.23 

presents the girders after removal of the forms, prior to release of the prestress force by 

means of flame cutting the strands. 

 

 

Figure 3.22 NU1100 Pouring 

 

Upon release and after removal of the girders from the precast bed, forming for 

placement of the deck began.  Figure 3.24 shows the girders post deck forming and 

placement of the reinforcing steel.  Figure 3.25 an image of the workers placing the 

decking on top of the NU1100 girders.  Four inch cylinders were taken at the time of 

concrete placement for the girders and decking and strengths were checked at release at 

the plant and at the structures lab on the day of testing the each girder.    
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Figure 3.23 NU1100 at Release 

 

Figure 3.24 NU1100 Deck Forming 
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Figure 3.25 NU1100 Deck Pouring 

 

3.2.1.6 NU1100 Girder Test Setup 

The following sections discuss the setup and procedure followed with regards to testing 

the NU1100 girders.   

 

3.2.1.6.1 Development Length 

To determine the effects from confinement on the development length of the NU1100 

specimen, a point load was applied to the deck at a distance of fourteen feet as shown in 

Figure 3.26 and Figure 3.27.   Bearing was located six inches in from each end producing 

an overall unsupported span of the girder for the development test of thirty-nine feet.  The 

loading location for testing was chosen to satisfy current AASHTO specifications for 
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required length to fully develop prestress strand.  Using a strain compatibility analysis of 

the section to determine the stress in the girders strands, found Appendix B, and then 

incorporating those values into the mentioned equation, the length required to fully 

develop the 0.7” diameter strands was: 

1.6     -
2

3
                        Equation 16 

 

The applied load and corresponding vertical deflection was monitored and recorded as 

the load increased up to the calculated nominal flexural capacity of the section.  The load 

was stopped just above the calculated value in order to validate the strands full 

development and corresponding girders capacity, while preserving the structural integrity 

of the girder for moving and future testing. 

 

 

Figure 3.26 NU1100 Development Length Test Setup (CAD) 
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Figure 3.27 NU1100 Development Length Test Setup 

 

While testing, each girder was visually inspected and cracks were periodically marked to 

identify the failure mode.  Bottom strand slippage was monitored using ten 

potentiometers as shown in Figure 3.28, while the two top strands were monitored via a 

mechanical gauge and a string potentiometer.      
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Figure 3.28 Development Length Test Strand Instrumentation 

 

3.2.1.6.2 Vertical Shear 

A shear test was performed on one end of each of the three NU1100 girders.  The girders 

were loaded at a distance of 1.77h from the end support, eight feet from the end of the 

girder.  The overall span for the test was thirty-nine feet with each end bearing located in 

six inches from the end of the girder.  Figure 3.29 and Figure 3.30 present the setup 

utilized for testing the NU1100 girders in shear.   
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Figure 3.29 NU1100 Vertical Shear Test Setup (CAD) 

 

 

Figure 3.30 NU1100 Vertical Shear Test Setup 
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While testing, each girder was visually inspected and cracks were periodically marked to 

identify the failure mode.  Bottom strand slippage was monitored using ten 

potentiometers as shown in Figure 3.31, while the two top strands were monitored via a 

mechanical gauge and a string potentiometer.      

 

 

Figure 3.31 Vertical Shear Test Strand Instrumentation 

 

3.2.2 Test Results 

3.2.2.1 T24 Girders 

The following three sections present the results from transfer length, development length, 

and shear testing performed by the researchers on the T24 girders.    
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3.2.2.1.1 Transfer Length 

The transfer length was tested on six of the T24 girders fabricated at the university.  The 

initial readings taken just after release, as well as the final transfer readings, taken at 

fourteen days after release, were measured as described in Section 3.2.1.3.1 of this report.  

The surface strain on each side and each end of the girders was calculated using the 95% 

AMS Method outlined by Russell and Burns in Section 2.1.3.1.  A sample of the surface 

strain plot set up for initial and final 95% AMS transfer length determination is presented 

by Figure 3.32.   

 

 

Figure 3.32 T-4-1.0h-B North End, West Side Surface Strain Measurements with 

Modified 95% AMS Method 

  

Table 3.5 presents the overall results from all of the 95% AMS transfer length plots.  

AASHTO LRFD section 5.11.4.1 estimates the transfer length of a 0.7” diameter strand 

to be 42 inches.   As can be seen with Table 3.5, all specimens saw prestress transfer at a 
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much lower value than that predicted by AASHTO specifications.  This result was 

expected by the researchers as the code on this subject is generally conservative, not 

taking into account many aspects believed to aid in reducing the length of prestress 

transfer from the strand to the concrete, as noted by (Maguire 2009) and others.  

 

Table 3.5 T24 Girder Transfer Length Summary 

 

 

95% AMS Girder End Girder 95% AMS Girder End Girder

N-W 21.6 22.0

N-E 28.4 29.1

S-W 22.5 22.8

S-E 19.6 20.1

N-W 22.6 24.1

N-E 21.9 21.5

S-W 26.0 26.3

S-E 28.5 30.1

N-W 24.3 25.4

N-E 21.0 6.5

S-W 20.6 25.8

S-E 16.3 25.9

N-W 23.3 26.8

N-E 15.5 18.1

S-W 18.3 21.1

S-E 15.9 19.3

N-W 20.8

N-E 17.8

S-W 19.8

S-E 18.0

N-W 25.9

N-E 13.2

S-W 20.5

S-E 15.5

Initial Measurements (in.) Final Measurements (in.)

18.4

Girder 

Designation
End-Side

T-6-1.5h-A

T-6-0.5l-A

T-6-1.5h-B

T-4-1.0h-B

T-6-1.5h-C

T-4-1.0h-C

25.5

20.9

21.3

N/A

22.5

20.2

23.0

24.8

20.5

18.3

19.1

18.8

25.5

21.5

22.8

28.2

16.0

25.9

23.5

25.0

21.0

22.3

27.3

22.6

19.4

17.1

19.3

18.9

18.0

19.6
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Figure 3.33 graphically presents the results from the transfer length testing on the T24 

girders.  Again, it should be noted the relative proportion from actual specimen 

measurements to the length specified by AASHTO for design. 

 

 

Figure 3.33 T24 Transfer Length Comparison 

 

Table 3.6 is for comparing what effects, if any, come from changing either the amount or 

distribution of confinement throughout a girder.  To compare the effects from the amount 

of confinement, girders T-6-1.5h-A/B/C were analyzed against girder T-6-0.5l-A.  The 

results show no added benefit on prestress transfer from all the extra confinement steel.  

This result was of no surprise as previous research by (Russell and Burns 1996) produced 

similar results. 
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To compare the effects from distribution of the same amount of confinement, girders T-6-

1.5h-A/B/C were measured against those of girders T-4-1.0h-C.  Again, there was little to 

no effect from the distribution of the confinement reinforcement.  Overall the longer 

distribution, 1.5h, seemed to increase the transfer length slightly at initial and final 

readings; however, when comparing girders with like concrete strength individually, class 

B or C, the values became even closer.  This may show that the strength of the concrete 

around the prestress strand plays a larger role on transfer than the presence, or lack of 

confinement reinforcement. 

 

Table 3.6 T24 Girder Transfer Length Comparison 

 

 

3.2.2.1.2 Development Length 

The development length of the prestress strand was tested on all eight of the fabricated 

T24 girders.  The testing was performed as previously described in Section 3.2.1.3.2.  

Table 3.7 presents the results from the flexural tests performed on the specimen.  The 

calculated column presents the section values with the actual material properties inserted 

in the design calculations.  The tested column in Table 3.7 is data from the actual test 

performed on the T24 girders.  

24T Girders Transfer 24T Girders Transfer 

23.0 23.5

20.5 20.9

19.1

0.5l 3.0

18.3

18.8

Change (%)
Initial Measurements (in.) Final Measurements (in.)Confinement 

Spacing (in)
Distribution (L)

6.0
1.5h 20.9

22.2

4.0 1.0h 18.5

6.3

24.8 25.5

21.3

-

-

15.2
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Table 3.7 T24 Girder Flexural Capacity 

 

 

Figure 3.34 provides a graphical presentation of the girders behavior while testing.  The 

line indicating AASHTO Mn represents the required applied load, at the designated test 

distance which corresponds to the nominal capacity of the section incorporating the 

specified materials properties and with a resistance factor, φ, of 1.0.  All T24 girders 

tested met and exceeded the nominal flexural capacity for the specified materials, as well 

as the modified values from actual material properties.  

 

Calculated Tested Tested/Calculated

(kip-ft) (kip-ft) (%)

T-6-1.5h-A 809 948 117.2

T-6-0.5l-A 809 948 117.2

T-6-1.5h-B 805 830 103.1

T-4-1.0h-B 805 829 103.0

T-6-1.5h-C 787 824 104.7

T-4-1.0h-C 787 879 111.7

T-12-0.5l-D 803 827 103.0

T-4/6-1/1.5h-D 803 814 101.4

Girder No.

Nominal Flexural Capacity [Mn]
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Figure 3.34 T24 Load v. Deflection Comparison 

 

Figure 3.35 presents one of the T24 girders post the flexural test.  The failure shown was 

typical for all eight specimens.  One notable outcome from the test was with regards to 

the cracking and spalling of the concrete from the bottom of the tee girders.  The two 

girders with confinement throughout the entire length of them, T-6-0.5l-A and T-12-0.5l-

D experienced less cracking at the bottom of the web and little spalling of concrete upon 

reaching the ultimate load.  It can also be seen that those two girders experienced more 

deflection than their designed counterparts.  This could be attributed to the added 

confinement around the strands protecting the concrete, holding it together, and in return 

increasing the overall ductility of the section.    
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Figure 3.35 T24 Post Development Testing 

 

While testing the T24 girders’ flexural capacity, the bottom row of strands was monitored 

for any relative movement which would indicate a bond failure within the calculated 

AASHTO development length of the specimen.  Figure 3.36 provides a drawing of the 

strand layout and designation for monitoring and reporting purposes.  Consequently, 

Figure 3.37 through Figure 3.44 presents the data from the potentiometers during each 

girders test.  Again the line indicating AASHTO Mn represents the required applied load, 

at the designated test distance which corresponds to the nominal capacity of the section 

incorporating the specified materials properties and with a resistance factor, φ, of 1.0   
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Figure 3.36 T24 Development Test Strand Designation 

 

Also of note are the lines at ±0.01”on the subsequent figures. These lines represent the 

permitted slippage allowed by ASTM A416 with regard to maintaining bond between the 

strand and surrounding concrete.    

 

Figure 3.37 T-6-1.5h-A Development Length Test Strand Slippage 

NE / SW Strand NW / SE Strand

NM / SM Strand

Looking at End of Girder
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Figure 3.38 T-6-0.5l-A Development Length Test Strand Slippage 

 

 

Figure 3.39 T-6-1.5h-B Development Length Test Strand Slippage 
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Figure 3.40 T-4-1.0h-B Development Length Test Strand Slippage 

 

 

Figure 3.41 T-6-1.5h-C Development Length Test Strand Slippage 
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Figure 3.42 T-4-1.0h-C Development Length Test Strand Slippage 

 

 

Figure 3.43 T-12-0.5l-D Development Length Test Strand Slippage 
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Figure 3.44 T-4/6-1/1.5h-D Development Length Test Strand Slippage 

 

Figure 3.44 presents the slip data from girder T-4/6-1/1.5h-D.  This girder was designed 

with a confinement spacing of four inches at one end and six inch spacing at the opposite.  

When monitoring the girders’ strands for the development test the north set of strands 

designated NW, NM, and NE were confined with the four inch spaced hoops.  As the 

previous eight figures show, none of the girders experienced a premature failure due to 

inadequate bond of the larger strand at the AASHTO specified development length.  Only 

two girders, the class C series with lower concrete strength, show any noticeable 

movement of any monitored strands.  This may support the notion that the strength of the 

concrete surrounding the prestress strands contributes to fully develop the strands.   
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In order to study the effects from the amount of confinement placed in the girder, the 

results of testing the two specimens T-6-1.5h-A and T-6-0.5l-A can be compared.  Table 

3.7 along with Figure 3.34 shows the load and deflection for the development length 

testing of the two girders. These relationships were almost identical, which indicates that 

increasing the amount of confinement reinforcement above the specified AASHTO 

minimum does not significantly increase the flexural capacity of the girder. Designing 

with the AASHTO specified development length and confinement reinforcement resulted 

in fully developed strands up to the failure load.  

 

When analyzing the effects from the distribution of confinement reinforcement the results 

from testing the two specimens T-6-1.5h-B and T-6-1.5h-C are compared versus those of 

specimens T-4-1.0h-B and T-4-1.0h-C.  The relationships of the girders with the same 

concrete strength were almost identical, which indicates that increasing the intensity of 

confinement reinforcement above the AASHTO specification has negligible effect on the 

flexural capacity of the girders.  Once again, designing by the AASHTO specified 

development length and confinement reinforcement resulted in fully developed strands up 

to the failure load.   

 

3.2.2.1.3 Vertical Shear 

Two of the T24 girders, T-4/6-1/1.5h-D and T-12-0.5l-D, were subjected to shear testing 

at both ends post their development testing.  Table 3.8 provides the test data from the four 

shear tests on the T24 girders. 
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Table 3.8 T24 Girder Shear Capacity 

 

 

The calculated column presents the section values with the actual material properties 

inserted in the design calculations.  The tested column of Table 3.8 is obtained data from 

the actual test performed on the two T24 girders.   

 

 

Figure 3.45 T24 Load v. Deflection Comparison 

 

Calculated Tested Tested/Calculated

(lb) (lb) (%)

T-6-1.5h-D 82,000 109,000 132.9

T-4-1.0h-D 82,000 102,000 124.4

T-12-0.5l-D 82,000 102,000 124.4

T-12-0.5l-D 82,000 62,000 -
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Figure 3.45 graphically presents the applied load versus girder deflection for the tests 

performed.  The line indicating AASHTO Vn represents the required applied load, at the 

designated test distance which corresponds to the nominal shear resistance of the section 

incorporating the actual materials properties and with a resistance factor, φ, of 1.0.   

 

Upon completion of shear testing the T24 girders one result was drastically different from 

the other three.  One end of the T-12-0.5l-D reached an actual shear capacity of 109,000 

pounds, similar to the T-4/6-1/1.5h-D results, while the opposite end only obtained an 

ultimate capacity of 62,000 pounds.  Further investigation of previously recorded data 

revealed the cause of the premature failure at one end of the girder.   

 

 

Figure 3.46 T-12-0.5l-D Development Length Test Slippage 
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Figure 3.46 presents the strand slip data from the development test for the T-12-0.5l-D 

girder.  Figure 3.47 shows the same strand slip data for the T-4/6-1/1.5h-D from 

development testing; the north strands are confined with four inch spaced hoops.  Of note 

is the action from the strands upon completion of the prior test.  For three of the girder 

ends the strands saw a permanent movement at or around 0.002”.  But one end, the north 

end, of girder T-12-0.5l-D had an outer strand with permanent slip above 0.006”.   This 

strand movement confirms that the bond of that outer strand was compromised in the 

previous test which could have led to a greatly reduced capacity of the tee section on that 

end.  For this reason, the data obtained from the low shear test is only provided for 

information.  The results from that test will not be included in the researchers’ evaluation 

on the shear performance of the T24 girders.             

 

 

Figure 3.47 T-4/6-1/1.5h-D Development Length Test Slippage 
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Figure 3.48 provides an image of the T-4-1.0h-D girder after completion of the shear test.  

The failure mode shown was typical for all four shear tests performed at the structures 

lab.  

 

 

Figure 3.48 T24 T-4-1.0h-D Post Shear Test 

 

Once the shear tests were completed on the girders, data was obtained and analyzed in 

reference to the performance of the strands during ultimate loading.  Figure 3.49 

graphically presents the applied load versus the average strand slippage during testing.  

The average slippage was calculated incorporating movement from all three monitored 

bottom strands.   
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Figure 3.49 T24 Load v. Avg. Strand Slip Comparison 

 

 

Figure 3.50 T24 Load v. Max. Strand Slip Comparison 
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Figure 3.50 provides the applied load versus the maxim strand slippage for each shear 

test.  The maximum strand slippage plot is of the one strand which saw the greatest 

amount of relative movement throughout the shear testing.  In all cases it was an outer 

strand which saw the most slippage during testing.  This would make sense as there is 

bound to be an eccentricity not only from some derivation of the load from the exact 

center of the top flange but also from a lateral shift, or displacement of the strands from 

the designed location due to fabrication tolerances and methods.  These factors would 

produce a small torque on the girder which would result in a higher stress in one of the 

outer strands, causing a bond failure or slippage in that overstressed strand. 

 

In both the average strand slip case and the maximum strand slip case, the end with the 

confinement spaced at four inches for a distance equal to the height of the girder saw 

bond failure before the section reached its nominal capacity.   This was not the case for 

either of the other two comparable cases.  This may be connected to the location of the 

shear cracking through the transfer region of the girders’ web.  For the T-4-1.0h-D all of 

the confinement was located within the first 1.0h, twenty-four inches.  The transfer length 

previously found on similar specimen was between twenty and twenty-five inches, and 

the shear cracking is clearly within the transfer region of the tested T24 girders.  For this 

test setup, the distribution of confinement presented an effect on the bond capacity of the 

strands.  However, even though the strands did slip on the T-4-1.0h-D section beyond the 

ASTM A416 limit of 0.01”, the ultimate shear capacity of the section was not 

compromised.   
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Overall the T24 girders shear tests provide negligible results with regard to the effects 

from the amount of confinement reinforcement on the capacity of the section.  In both the 

AASHTO specified amount, T-4/6-1/1.5h-D, and for above the minimum amount, T-12-

0.5l-D, the overall capacity was shown to be around 24% above the calculated values.  

Something of note again with the shear test; the girder with the confinement dispersed 

throughout its entire length saw slightly more deflection during loading.  This result was 

previously seen during the development length testing of the T24 girders.  The data 

seems to show that one benefit to providing confinement throughout a girders’ entire 

length is in an increase in ductility of that member.        

 

3.2.2.2 NU1100 Girders 

The following two sections present the results from development length and shear testing 

performed by the researchers on the NU1100 girders.    

 

3.2.2.2.1 Development Length 

The development length of the prestress strand was tested on one end of all three 

NU1100 girders.  The testing was performed as previously described in Section 3.2.1.6.1.  

Table 3.9 presents the results from the flexural tests performed on the specimen.  The 

calculated column presents the section values with the actual material properties inserted 

in the design calculations.  The tested column in Table 3.9 is data from the actual test 

performed on the NU1100 girders.  
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Table 3.9 NU1100 Girder Flexural Capacity 

 

 

Figure 3.51 provides a graphical presentation of the girders behavior while testing.  The 

line indicating AASHTO Mn represents the required applied load, at the designated test 

distance which corresponds to the nominal capacity of the section incorporating the 

specified materials properties and with a resistance factor, φ, of 1.0.  All three NU1100 

girders were tested to approximately their calculated nominal flexural capacity in order to 

validate the strands full development and corresponding girders capacity and yet preserve 

the structural integrity of the girder for subsequent shear testing. 

 

Calculated Tested Tested/Calculated

(kip-ft) (kip-ft) (%)

1 9697 9649 99.5

2 9634 9648 100.1

3 9653 9647 99.9

Girder No.

Nominal Flexural Capacity [Mn]
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Figure 3.51 NU1100 Load v. Deflection Comparison  

 

Figure 3.52 presents NU1100 Girder 2 post the flexural test.  The resulting cracks and 

pattern shown was typical for all three specimens.  The black marks occurred before or at 

500,000 pounds, the cracks marked in red were present under an applied load of 750,000 

pounds, and the green cracks were created up to the final loading of the section, around 

1,070,000 pounds.   
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Figure 3.52 NU1100 Girder 2 Post Development Testing 

 

While testing the NU1100 girders’ flexural capacity, ten strands in the bottom row as 

well as the top two strands were monitored for any relative movement which would 

indicate a bond failure within the calculated AASHTO development length of the 

specimen.  Figure 3.53 provides a drawing of the strand layout and designation for 

monitoring and reporting purposes.  Figure 3.54, Figure 3.55, and Figure 3.56 present the 

data from the potentiometers during each girders test.  Again the line indicating 

AASHTO Mn represents the required applied load, at the designated test distance which 

corresponds to the nominal capacity of the section incorporating the specified materials 

properties and with a resistance factor, φ, of 1.0.   

 



www.manaraa.com

96 

 

 

Figure 3.53 NU1100 Development Test Strand Designation 

 

Also of note are the lines at -0.01”on the subsequent figures. These lines represent the 

permitted slippage allowed by ASTM A416 with regard to maintaining bond between the 

strand and the surrounding concrete.   

 

Monitoring of the two top strands during the development tests was done with both a 

mechanical gauge and a rotary potentiometer as described in Section 3.2.1.6.1.  In none 

of the three tests, for either of the top strands, was any slippage detected by either means 

of observation and documentation.    
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Figure 3.54 NU1100 Girder 1 Strand Slip 

 

 

Figure 3.55 NU1100 Girder 2 Strand Slip 
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Figure 3.56 NU1100 Girder 3 Strand Slip 

 

The first NU1100 girder tested for development was Girder 3.  Although the girder 

reached its nominal capacity, when the strand slippage data was analyzed it was found 

that half of the monitored bottom strands had enough reduction of their bond capacity to 

cause defined slippage.  One strand in particular, Strand 9, lost bond at only around one 

third of its estimated capacity and had a total movement of over 0.040” during the 

development test.   

 

Figure 3.57 presents what was deemed the cause of the early failure for multiple strands.  

While testing, the bearing width at the tested end of the girder was only three inches.  

That condition caused a stress concentration at the bearing location, inducing cracks 

through the bottom flange of the girder in the transfer zone of the prestressed strands.  
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This detail was changed prior to development tests on Girders 1 and 2 as a twelve inch by 

thirty inch plate was placed above the roller to increase the overall bearing area, better 

representing actual conditions experienced by bridge girders in the field. 

      

 

Figure 3.57 NU1100 Girder 3 Post Development Test 

 

Figure 3.58 provides the applied load versus the maxim strand slippage for each 

development test.  The maximum strand slippage plot is of the one strand which saw the 

greatest amount of relative movement throughout the development testing.  Girder 1saw 

Strand 5 experience the most movement, for Girder 2 it was Strand 4, and for Girder 3 it 

was Strand 9.   
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Figure 3.58 NU1100 Load v. Max. Strand Slip Comparison 

 

Table 3.9 along with Figure 3.51 shows the calculated load and observed deflection for 

the development length testing on the NU1100 girders.  The relationships between all 

three girders were almost identical, indicating that an increase in the amount of 

confinement reinforcement above the specified AASHTO minimum, Girders 1 and 3 

versus Girder 2, does not significantly increase the flexural capacity of the girder.  

Comparing Girder 1 with Girder 2, a decrease in the intensity of confinement over a 

distance equal to 1.5h, but with an overall increase in total confinement again provides no 

significant increase in a girders’ flexural capacity.  Excluding the strand data from Girder 

3, due to the unfavorable bearing condition, no significant impact was found on the 

strands bond as a result from decreasing the intensity of confinement over the initial 1.5h 

of the girder end.   
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Note, one minor result noticed with the NU1100 girder development data.  When 

comparing Girders 1 and 3 versus Girder 2, again, a slight increase was detected in the 

girders deflection with the confinement reinforcement distributed throughout the entire 

girder while experiencing equivalent loading.   

 

3.2.2.2.2 Vertical Shear 

After the development length testing was performed on the NU1100 girders, the opposite 

end was subjected to shear testing.  Table 3.10 provides the test data from the three shear 

tests on the NU1100 girders.  The calculated column presents the section values with the 

actual material properties inserted in the design calculations.  The tested column in Table 

3.10 is data from the actual test performed. 

 

Table 3.10 NU1100 Girder Shear Capacity 

 

 

Figure 3.59 presents the behavior of the three girders while testing.  The line indicating 

AASHTO Vn represents the required applied load, at the designated test distance which 

corresponds to the nominal shear resistance of the section incorporating the actual 

materials properties and with a resistance factor, φ, of 1.0.  

  

Calculated Tested Tested/Calculated

(lb) (lb) (%)

1 659,000 795,000 120.6

2 659,000 796,000 120.8

3 659,000 766,000 116.2

Girder No.

Nominal Shear Capacity [Vn]
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Figure 3.59 NU1100 Load v. Deflection Comparison 

 

Figure 3.60 provides an image of Girder 2 after completion of the shear test.  The failure 

mode shown was typical for all three shear tests performed at the structures lab. While 

testing the NU1100 girders’ shear capacity, ten strands in the bottom row as well as the 

top two strands were monitored for any relative movement which would indicate a bond 

failure within the calculated AASHTO development length of the specimen.  Figure 3.61 

provides a drawing of the strand layout and designation for monitoring and reporting 

purposes.   
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Figure 3.60 NU1100 Girder 2 Post Shear Test 

 

 

Figure 3.61 NU1100 Shear Test Strand Designation 
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Figure 3.62, Figure 3.63, and Figure 3.64 present the data from the potentiometers during 

each girder’s test.  Again the line indicating AASHTO Vn represents the required applied 

load, at the designated test distance which corresponds to the nominal capacity of the 

section incorporating the actual materials properties and with a resistance factor, φ, of 

1.0.  Also, the lines at -0.01”on the subsequent figures represent the permitted slippage 

allowed by ASTM A416 with regard to maintaining bond between the strand and the 

surrounding concrete.   

 

Monitoring of the two top strands during the shear tests was done with both a mechanical 

gauge and a rotary potentiometer as described in Section 3.2.1.6.2.  In none of the three 

tests, for either of the top strands, was any slippage detected by either means of 

observation and documentation.    

 

Figure 3.62 NU1100 Girder 1 Strand Slip 
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Figure 3.63 NU1100 Girder 2 Strand Slip 

 

 

Figure 3.64 NU1100 Girder 3 Strand Slip 

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

-0.100-0.090-0.080-0.070-0.060-0.050-0.040-0.030-0.020-0.0100.000

A
p

p
li

e
d

 L
o

a
d

 (
lb

)

Strand Slip (in.)

West Strand

Strand 2

Strand 3

Strand 4

Strand 5

Strand 6

Strand 7

Strand 8

Strand 9

East Strand

ASTM A416 Slip

AASHTO Vn

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

-0.100-0.090-0.080-0.070-0.060-0.050-0.040-0.030-0.020-0.0100.000

A
p

p
li

e
d

 L
o

a
d

 (
lb

)

Strand Slip (in.)

West Strand

Strand 2

Strand 3

Strand 4

Strand 5

Strand 6

Strand 7

Strand 8

Strand 9

East Strand

ASTM A416 Slip

AASHTO Vn



www.manaraa.com

106 

 

Figure 3.65 provides the applied load versus the maximum strand slippage for each shear 

test.  The maximum strand slippage plot is of the one strand which saw the greatest 

amount of relative movement throughout the shear testing.  For all three NU girders 

Strand 4 experienced the most relative movement during testing but only Girder 1had any 

strands which reached the ASTM defined level of slippage prior to meeting the nominal 

shear resistance of the section.  

 

 

Figure 3.65 NU1100 Load v. Max. Strand Slip Comparison 

 

The slippage results from shear testing provided some noticeable information.  Girder 1, 

with a reduced amount of confinement at the end of the girder saw more strands slip and 

with greater intensity than the other two girders with the AASHTO specified end 
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confinement.  An association may be made that the intensity of confinement at the end of 

the girder does aid the strand-concrete bond with respect to a shear loading condition.  

 

The overall load-deflection results show no conclusive evidence which favors one 

confinement condition over another.  The results shown in Figure 3.59 between Girders 1 

and 2 are indistinguishable and Table 3.10 provides results which associate the actual 

nominal shear capacity of the three NU1100 girders between sixteen and  twenty percent 

higher than their calculated values.  The reason for Girder 3 providing slightly lower 

values is unknown by the researchers.  There are a number of factors which can skew test 

results, beginning with fabrication of the specimen, proper handling, or minor difference 

in the testing setup.  In any case, the results were still positive and within four percent of 

the values seen from the other two girders. 

 

4 SUMMARY, CONCLUSIONS, & RECOMMENDATIONS 

 

4.1 Summary  

The main objective of this study was to determine what impact, if any, confinement 

reinforcement has on the performance of prestressed concrete bridge girders.  Of 

particular interest was the effect confinement had on the transfer length, development 

length, and vertical shear capacity of the fore mentioned members.  This was 

accomplished through extensive analytical and experimental investigations performed on 

first a twenty-four inch tee girder section (T24) and later a NU1100 girder section. 
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The T24 girders designed, fabricated, and tested by the researchers were subjected to 

transfer length tests, flexural tests for development length, and shear testing. The 

NU1100 girders were designed and tested by the researchers, but fabrication was 

provided by a local precaster.  The specimens were later shipped to the PKI structures lab 

for testing in flexure (one end), and finally shear (opposite end).  

 

Transfer length data was obtained by means of the concrete surface strain and calculated 

using the 95% AMS Method outlined by Russell and Burns.  DEMEC readings were 

taken just prior to release of the prestressing force to the girder and immediately after to 

establish the initial transfer.  After a period of fourteen days the readings were again 

taken and compared to the pre-release data to constitute the final transfer data.     

 

Development length testing for both sets of specimen was performed by placing an 

applied load to the top of the section at a distance equal to the 2004 AASHTO specified 

development length, which for both sections was approximately fourteen feet.  The 

ultimate capacity of the sections were then calculated and used to gauge the performance 

of each specimen.  An actual ultimate capacity greater than that calculated by AASHTO 

specifications provided evidence that the section was fully developed and met AASHTO 

design criteria. 

 

Shear tests were also performed on a number of specimens.  A load was applied to the top 

of the section at a specified distance of approximately two times the height of the section.   
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The nominal resistance was then calculated and used to gauge the performance of each 

specimen.  The ultimate capacity data recorded from each test, for each section, was then 

compared to one another. 

 

At the conclusion of the experimental investigation all data was thoroughly analyzed and 

presumptions were made, in this report, with regard to the results.       

 

4.2 Conclusions 

The following sections present conclusions made, from the study, with respect to the 

impact of confinement reinforcement on performance of prestressed concrete bridge 

girders. 

 

4.2.1 Transfer Length 

1) The amount of confinement reinforcement had an insignificant effect on the initial or 

final prestress strand transfer length.   

 

2) The distribution of confinement reinforcement had an insignificant effect on the initial 

or final prestress strand transfer length.  

 

The aforementioned conclusions occur because confinement reinforcement remains 

inactive until concrete cracks, which does not usually occur at time of prestress transfer.  
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This result is in agreement with conclusions made by others studying 0.5” and 0.6” 

diameter strands.  

 

4.2.2 Development Length 

At the 2004 AASHTO LRFD calculated development length; the following conclusions 

can be made. 

 

1) The amount of confinement reinforcement: 

 a)  Had insignificant effect on the flexural capacity of the tested girders. 

 b) Produced insignificant evidence that it effects bond capacity or prevents 

 premature slippage of the prestressed strands. 

 c)  Provided a slight increase in the girders’ overall ductility when placed across  its 

 entire length. 

 

2) The distribution of confinement reinforcement: 

 a) Had insignificant effect on the flexural capacity of the tested girders. 

 b) Produced insignificant evidence that it effects bond capacity or  prevents 

 premature slippage of the prestressed strands. 

 c) Reduced cracking and spalling of concrete from around the strands at ultimate 

 loading. 
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Overall, the impact of varied confinement reinforcement on the ultimate flexural capacity 

of bridge girders at their development length was negligible.  This determination is 

viewed as a product of a conservative AASHTO LRFD development length equation by 

incorporating a k factor of 1.6.  In all tested cases, regardless of confinement variability, 

the sections’ nominal moment capacity was reached or exceeded. The tests performed 

show that current AASHTO LRFD specifications pertaining to nominal moment values 

of bridge girder sections, as well as, strand development length are adequate. 

  

4.2.3 Vertical Shear 

From testing, the following results can be made for girders which include some amount 

of bottom flange confinement reinforcement. 

 

1) The amount of confinement reinforcement: 

 a) Had an insignificant effect on the shear resistance of the tested girders. 

 b) Provided a slight increase in the girders’ overall ductility when placed across its 

 entire length.   

 

2) The distribution of confinement reinforcement: 

 a) Had an insignificant effect on the shear resistance of the tested girders. 

 b) Produced conclusive evidence that it improves bond capacity or prevents 

 premature slippage of the prestressed strands. 
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Overall, the impact of varied confinement reinforcement on the shear resistance of bridge 

girders was negligible.  In all tested cases, regardless of confinement variability, the 

ultimate shear capacity was found to be 17% - 25% greater than the AASHTO LRFD 

calculated nominal resistance for each section.  

 

4.3 Recommendations 

Section 4.3 provides recommendations from the researchers based on results from the 

analytical and experimental investigations presented herein.  

 

4.3.1 Future Research 

One area with little research is the effect confinement reinforcement has on the 

development length of prestress strand.  This particular project only looked to validate 

current AASHTO LRFD specified codes, not to challenge or provide alternate means and 

methods of calculating the development length of prestress strand.  Theoretically the 

effects of confinement should assist in developing a strand, but to what extent?  Should 

the AASHTO LRFD development length equation incorporate a variable for 

confinement?  As the material properties of future prestressing strand increase, (grade, 

diameter, etc.) the current AASHTO development length equation will need to be 

reviewed and opportunities to link research for the newly developed strand with 

modifying the existing development length equation will become present.  
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4.3.2 DOT Girder Detailing 

The data suggests some recommendations applicable to state DOT engineers and bridge 

girder detailers.  The first is to incorporate AASHTO LRFD Specification 5.10.10.2 as 

their typical end confinement.  No benefit was exposed to altering the amount or 

distribution of the confinement at the end of the tested girders.  The current AASHTO 

LRFD detail seems to be efficient and adequate.   

 

Another recommendation to state DOT’s is actually an extension of the first.  It is in the 

best interest of bridge girder details to include some level of confinement between the 

end regions defined as 1.5h.  One benefit from the extra confinement is reduced cracking 

and spalling concrete from aged and overstressed girders.  Another is a slightly more 

ductile behavior of the girder above its nominal capacity.  The third and strongest 

argument for the extra steel is for protection and support of the prestress strands in the 

event of impact on the girders from over height vehicles.   Figure 4.1 presents damage 

done to bridge girders in the state of Washington from an over height vehicle.  The 

additional confinement reinforcement adds very little expense to the overall cost of a 

bridge girder, and the benefits provided by that steel seems worth its presence. 
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Figure 4.1 Collision Impact on Exterior Girder 

 

The last suggestion is to extend at least a portion of the strands from the fabricated bridge 

girders and bend them into a poured diaphragm.  This detail will reduce, if not eliminate, 

the strand bond failure seen from testing.  Although the ultimate capacities for all girders 

met and exceeded their nominal values, strand slippage was present in a number of 

specimens.  The addition of this step will further decrease the development length of the 

embedded strands thereby reducing the length of girder which is under developed.  This 

suggestion too provides exceptional benefits versus the cost and inconvenience involved. 
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APPENDIX A – T24 Girder Design Calculations 

 

 

 

 

 

 

 

 

 

Girder H  (in) A  (in
2
) Ix  (in

4
) yb  (in) W  (lb/ft)

T24 24.0 288 15744 15.32 300
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Figure A.1 T24 Concrete Strength 

Table A.1 T24 Properties 
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Parameter Symbol Value Unit

Total Section Depth h 24.00 in

C.G. of Bottom Strands yps 3.00 in

Effective Depth de 21.00 in

Shear Depth dv 18.90 in

Web Width bv 5.0 in

Shear Reduction Factor φ 0.9 N/A

Section Distance From Support x 4.42 ft Applied Load 119.5

Ultimate Shear Vu 82 kip

Ultimate Moment Mu 341 kip.ft

Ultimate Axial Force Nu 0 kip

Locked in Stresses fpo 189 ksi

Development Length ld 14 ft

Area of Strands in Tension Side Aps 1.76 in2

Transfer Length lt 3.5 ft

Prestressing Shear Force Vp 0.0 kip

Strands Modulus Eps 28,500         ksi

Area of Steel As 0 in2

Steel Modulus Es 29,000         ksi

Concrete Strength f'c 11.2 ksi

Stirrup Yield Strength fy 75.0 ksi Modified Aps 1.281

Strain εx 0.0015 N/A 0 <= εx <= 0.006

Maximum Aggregate Size ag 0.75 in

Maximum Spacing bet. Skin Rft Layer Sx 18.90 in

Crack Spacing Parameter Sxe 18.90 in 12 <= Sxe <= 80

Shear Stress in Concrete / f'c v/f'c 0.086 N/A <= 0.25

Section Contains at Least Min. Transverse Rft. Yes N/A

Calculated shear Angle θ 34.42 degree

Concrete Shear Factor β 2.22 N/A

Concrete Shear Force Vc 22.2 kip Use at least Avmin

Steel Shear Force Vs 68.8 kip

Maximum Spacing Smax 15.1 in

Minimum Steel Shear Force Avmin 0.085 in2/ft

Required Area of Steel Av 0.40 in2/ft

Figure A.6 T24-D Vertical Shear Capacity by Detailed Method 
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APPENDIX B – NU1100 Girder Design Calculations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Girder H  (in) A  (in
2
) Ix  (in

4
) yb  (in) W  (lb/ft)

NU1100 43.3 694.6 182,279 19.60 724

NU1100+Deck 50.8 1,056.1 363,187 29.00 1,100

Specimen Properties

Girder Deck

f'c  (psi) f'c  (psi)

1 14770 9790

2 14710 9250

3 14760 9410

NU1100 Concrete Strength

Table B.1 NU1100 Properties 

Table B.2 Specimen Concrete Strength @ Testing 
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Parameter Symbol Value Unit

Total Section Depth h 50.80 in

C.G. of Bottom Strands yps 3.06 in

Effective Depth de 47.74 in

Shear Depth dv 42.97 in

Web Width bv 5.9 in

Shear Reduction Factor φ 1.0 N/A

Span L 39.0 ft

Section Distance From Support x 7.50 ft

Applied Load P 802 kip

Ultimate Shear Vu 659 kip

Ultimate Moment Mu 4988 kip.ft

Ultimate Axial Force Nu 0 kip

Locked in Stresses fpo 189 ksi

Development Length ld 13.5 ft

Area of Strands in Tension Side Aps 7.64 in2

Transfer Length lt 3.5 ft

Prestressing Shear Force Vp 0.0 kip

Strands Modulus Eps 28,500         ksi

Area of Steel As 0 in2

Steel Modulus Es 29,000         ksi

Concrete Strength f'c 14.75 ksi

Stirrup Yield Strength fy 75.0 ksi Modified Aps 6.268

Strain εx 0.0049 N/A 0 <= εx <= 0.006

Maximum Aggregate Size ag 0.50 in

Maximum Spacing bet. Skin Rft Layer Sx 42.97 in

Crack Spacing Parameter Sxe 52.47 in 12 <= Sxe <= 80

Shear Stress in Concrete / f'c v/f'c 0.176 N/A <= 0.25

Section Contains at Least Min. Transverse Rft. Yes N/A

Calculated shear Angle θ 45.99 degree

Concrete Shear Factor β 1.03 N/A

Concrete Shear Force Vc 31.8 kip Use at least Avmin

Steel Shear Force Vs 626.7 kip

Maximum Spacing Smax 12.0 in

Minimum Steel Shear Force Avmin 0.115 in2/ft

Required Area of Steel Av 2.42 in
2
/ft

Figure B.4 NU1100 Vertical Shear Capacity by Detailed Method 
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